21 research outputs found

    The correlation of blue shift of photoluminescence and morphology of silicon nanoporous

    Get PDF
    Porous silicon with diameters ranging from 6.41 to 7.12 nm were synthesized via electrochemical etching by varied anodization current density in ethanoic solutions containing aqueous hydrofluoric acid up to 65mA/cm2.The luminescence properties of the nanoporous at room temperature were analyzed via photoluminescence spectroscopy. Photoluminescence PL spectra exhibit a broad emission band in the range of 360-700 nm photon energy. The PL spectrum has a blue shift in varied anodization current density; the blue shift incremented as the existing of anodization although the intensity decreased. The current blue shift is owning to alteration of silicon nanocrystal structure at the superficies. The superficial morphology of the PS layers consists of unified and orderly distribution of nanocrystalline Si structures, have high porosity around (93.75%) and high thickness 39.52 µm

    Photophysical performance of radio frequency sputtered Pt/n-PSi/ZnO NCs/Pt photovoltaic photodetectors

    Get PDF
    The effect of the annealing temperature on the photoelectrical properties of the nanoporous silicon/zinc oxide nanocrystallites-based (Pt/n-PSi/ZnO NCs/Pt) photodetector was investigated. Different morphologies of 3D ZnO were synthesized onto the n-PSi substrates via radio frequency (RF) sputtering in the absence of a catalyst. The synthesis of ZnO NCs was controlled by varying the growth temperature between 600–700 °C and 800–900 °C. The effect of the synthesis temperature on the structural, morphological, and optical properties of the n-PSi/ZnO NCs was systematically studied using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence spectroscopy (PL) techniques. The roughness was found to be dependent on the anodization current density. The optimal n-PSi/ZnO NCs-based metal-semiconductor-metal UV detector (MSM) was fabricated at 700 °C. The fabricated device showed a high sensitivity of 1007.14, an internal photoconductive gain of 11.07, and a responsivity of 5.99 A/W with a low dark current when illuminated with 380 nm light (1.55 mW/cm2) at +5 V bias voltage. In addition, the response and recovery times were determined to be 0.34 and 0.22 s, respectively. This approach offers a cost-effective substrate and simple synthesis method to improve the growth of the n-PSi/ZnO NCs and demonstrates the successful fabrication of nanoscale photodetectors with potential application in nano-optics devices

    Responsivity Dependent Anodization Current Density of Nanoporous Silicon Based MSM Photodetector

    Get PDF
    Achieving a cheap and ultrafast metal-semiconductor-metal (MSM) photodetector (PD) for very high-speed communications is ever-demanding. We report the influence of anodization current density variation on the response of nanoporous silicon (NPSi) based MSM PD with platinum (Pt) contact electrodes. Such NPSi samples are grown from n-type Si (100) wafer using photoelectrochemical etching with three different anodization current densities. FESEM images of as-prepared samples revealed the existence of discrete pores with spherical and square-like shapes. XRD pattern displayed the growth of nanocrystals with (311) lattice orientation. The nanocrystallite sizes obtained using Scherrer formula are found to be between 20.8 nm and 28.6 nm. The observed rectifying behavior in the I-V characteristics is ascribed to the Pt/PSi/n-Si Schottky barrier formation, where the barrier height at the Pt/PSi interface is estimated to be 0.69 eV. Furthermore, this Pt/PSi/Pt MSM PD achieved maximum responsivity of 0.17 A/W and quantum efficiency as much as 39.3%. The photoresponse of this NPSi based MSM PD demonstrated excellent repeatability, fast response, and enhanced saturation current with increasing anodization current density

    High-performance nanoporous silicon-based photodetectors

    Get PDF
    A series of porous silicon (PSi) samples was prepared using photoelectrochemical etching (PECE) method with optimum current density of 45 mA/cm2. The as-prepared PSi samples were characterized to determine the influence of the etching time (15, 25 and 30 min) on their morphology and electrical properties. The percentage of porosity was estimated via gravimetric analysis. The band gap of the fabricated PSi was ≈2.22 eV. Upon their use to fabricate metal-semiconductor-metal (MSM) ultraviolet photodetectors (UVPD), the fabricated PSi revealed excellent stability and reliability under repetitive shots at 530 nm. Furthermore, very fast rise time (≈0.28 s) was obtained at a bias of 1 V under visible light (530 nm) illumination
    corecore