700 research outputs found
Predicting solar cycle 24 with a solar dynamo model
Whether the upcoming cycle 24 of solar activity will be strong or not is
being hotly debated. The solar cycle is produced by a complex dynamo mechanism.
We model the last few solar cycles by `feeding' observational data of the Sun's
polar magnetic field into our solar dynamo model. Our results fit the observed
sunspot numbers of cycles 21-23 extremely well and predict that cycle~24 will
be about 35% weaker than cycle~23.Comment: 10 pages 1 table 3 figure
The origin of grand minima in the sunspot cycle
One of the most striking aspects of the 11-year sunspot cycle is that there
have been times in the past when some cycles went missing, a most well-known
example of this being the Maunder minimum during 1645-1715. Analyses of
cosmogenic isotopes (C14 and Be10) indicated that there were about 27 grand
minima in the last 11,000 yr, implying that about 2.7% of the solar cycles had
conditions appropriate for forcing the Sun into grand minima. We address the
question how grand minima are produced and specifically calculate the frequency
of occurrence of grand minima from a theoretical dynamo model. We assume that
fluctuations in the poloidal field generation mechanism and the meridional
circulation produce irregularities of sunspot cycles. Taking these fluctuations
to be Gaussian and estimating the values of important parameters from the data
of last 28 solar cycles, we show from our flux transport dynamo model that
about 1-4% of the sunspot cycles may have conditions suitable for inducing
grand minima.Comment: Accepted for publication in Physical Review Letter
Towards A Mean-Field Formulation Of The Babcock-Leighton Type Solar Dynamo. I. Alpha Coefficient Versus Durney's Double Ring Approach
We develop a model of the solar dynamo in which, on the one hand, we follow
the Babcock-Leighton approach to include surface processes like the production
of poloidal field from the decay of active regions, and, on the other hand, we
attempt to develop a mean field theory that can be studied in quantitative
detail. One of the main challenges in developing such models is to treat the
buoyant rise of toroidal field and the production of poloidal field from it
near the surface. We build up a dynamo model with two contrasting methods of
treating buoyancy. In one method, we incorporate the generation of the poloidal
field near the solar surface by Durney's procedure of double ring eruption. In
the second method, the poloidal field generation is treated by a positive
alpha-effect concentrated near the solar surface, coupled with an algorithm for
handling buoyancy. The two methods are found to give qualitatively similar
results.Comment: 32 pages, 27 figures, uses aastex.cls and epsfig.st
Fluctuations in the Alpha-Effect and Grand Solar Minima
Parameters of a special kind of \alpha-effect known in dynamo theory as the
Babcock-Leighton mechanism are estimated using the data of sunspot catalogs.
The estimates evidence the presence of the Babcock-Leighton \alpha-effect on
the Sun. Fluctuations of the \alpha-effect are also estimated. The fluctuation
amplitude appreciably exceeds the mean value, and the characteristic time for
the fluctuations is comparable to the period of the solar rotation.
Fluctuations with the parameters found are included in a numerical model for
the solar dynamo. Computations show irregular changes in the amplitudes of the
magnetic cycles on time scales of centuries and millennia. The calculated
statistical characteristics of the grand solar minima and maxima agree with the
data on solar activity over the Holocene.Comment: To appear in Astronomy Reports, 20 pages, 9 figure
Solar activity forecast with a dynamo model
Although systematic measurements of the solar polar magnetic field exist only
from mid 1970s, other proxies can be used to infer the polar field at earlier
times. The observational data indicate a strong correlation between the polar
field at a sunspot minimum and the strength of the next cycle, although the
strength of the cycle is not correlated well with the polar field produced at
its end. This suggests that the Babcock Leighton mechanism of poloidal field
generation from decaying sunspots involves randomness, whereas the other
aspects of the dynamo process must be reasonably ordered and deterministic.
Only if the magnetic diffusivity within the convection zone is assumed to be
high, we can explain the correlation between the polar field at a minimum and
the next cycle. We give several independent arguments that the diffusivity must
be of this order. In a dynamo model with diffusivity like this, the poloidal
field generated at the mid latitudes is advected toward the poles by the
meridional circulation and simultaneously diffuses towards the tachocline,
where the toroidal field for the next cycle is produced. To model actual solar
cycles with a dynamo model having such high diffusivity, we have to feed the
observational data of the poloidal field at the minimum into the theoretical
model. We develop a method of doing this in a systematic way. Our model
predicts that cycle 24 will be a very weak cycle. Hemispheric asymmetry of
solar activity is also calculated with our model and compared with
observational data.Comment: 17 pages, 18 figures, submitted to MNRA
Reply to comments of Dikpati et al
We present here our response to Dikpati et al.'s criticism of our recent
solar dynamo model.Comment: 8 pages, 2 figure
A correction to Spruit's equation for the dynamics of thin flux tubes
It is pointed out that a term was overlooked in the derivation of the equation of motion for a thin flux tube by Spruit (1981). The correction to be applied in an inertial frame and in a rotating frame are discussed. This correction makes the formulation self-consistent, though it does not invalidate the qualitative results obtained by various investigators who have used Spruit's equation
Transport of toroidal magnetic field by the meridional flow at the base of the solar convection zone
In this paper we discuss the transport of toroidal magnetic field by a weak
meridional flow at the base of the convection zone. We utilize the differential
rotation and meridional flow model developed by Rempel and incorporate feedback
of a purely toroidal magnetic field in two ways: directly through the Lorentz
force (magnetic tension) and indirectly through quenching of the turbulent
viscosity, which affects the parametrized turbulent angular momentum transport
in the model. In the case of direct Lorentz force feedback we find that a
meridional flow with an amplitude of around 2 m/s can transport a magnetic
field with a strength of 20 to 30 kG. Quenching of turbulent viscosity leads to
deflection of the meridional flow from the magnetized region and a significant
reduction of the transport velocity if the magnetic field is above
equipartition strength.Comment: 8 pages, 6 figure
Evolution of helicity in NOAA 10923 over three consecutive solar rotations
We have studied the evolution of magnetic helicity and chirality in an active
region over three consecutive solar rotations. The region when it first
appeared was named NOAA10923 and in subsequent rotations it was numbered NOAA
10930, 10935 and 10941. We compare the chirality of these regions at
photospheric, chromospheric and coronal heights. The observations used for
photospheric and chromospheric heights are taken from Solar Vector Magnetograph
(SVM) and H_alpha imaging telescope of Udaipur Solar Observatory (USO),
respectively. We discuss the chirality of the sunspots and associated H_alpha
filaments in these regions. We find that the twistedness of superpenumbral
filaments is maintained in the photospheric transverse field vectors also. We
also compare the chirality at photospheric and chromospheric heights with the
chirality of the associated coronal loops, as observed from the HINODE X-Ray
Telescope.Comment: 8 pages, 4 figure
- …