138 research outputs found

    Raman Topography and Strain Uniformity of Large-Area Epitaxial Graphene

    Full text link
    We report results from two-dimensional Raman spectroscopy studies of large-area epitaxial graphene grown on SiC. Our work reveals unexpectedly large variation in Raman peak position across the sample resulting from inhomogeneity in the strain of the graphene film, which we show to be correlated with physical topography by coupling Raman spectroscopy with atomic force microscopy. We report that essentially strain free graphene is possible even for epitaxial graphene.Comment: 10 pages, 3 figure

    Variety of idempotents in nonassociative algebras

    Full text link
    In this paper, we study the variety of all nonassociative (NA) algebras from the idempotent point of view. We are interested, in particular, in the spectral properties of idempotents when algebra is generic, i.e. idempotents are in general position. Our main result states that in this case, there exist at least n−1n-1 nontrivial obstructions (syzygies) on the Peirce spectrum of a generic NA algebra of dimension nn. We also discuss the exceptionality of the eigenvalue λ=12\lambda=\frac12 which appears in the spectrum of idempotents in many classical examples of NA algebras and characterize its extremal properties in metrised algebras.Comment: 27 pages, 1 figure, submitte

    Dynamics of Macroscopic Wave Packet Passing through Double Slits: Role of Gravity and Nonlinearity

    Full text link
    Using the nonlinear Schroedinger equation (Gross-Pitaevskii equation), the dynamics of a macroscopic wave packet for Bose-Einstein condensates falling through double slits is analyzed. This problem is identified with a search for the fate of a soliton showing a head-on collision with a hard-walled obstacle of finite size. We explore the splitting of the wave packet and its reorganization to form an interference pattern. Particular attention is paid to the role of gravity (g) and repulsive nonlinearity (u_0) in the fringe pattern. The peak-to-peak distance in the fringe pattern and the number of interference peaks are found to be proportional to g^(-1/2) and u_0^(1/2)g^(1/4), respectively. We suggest a way of designing an experiment under controlled gravity and nonlinearity.Comment: 10 pages, 4 figures and 1 tabl

    Spatial fragmentation of a Bose-Einstein condensate in a double-well potential

    Get PDF
    We present a theoretical study of the ground state of a Bose-Einstein condensate with repulsive inter-particle interactions in a double-well potential, using a restricted variational principle. Within such an approach, there is a transition from a single condensate to a fragmented condensate as the strength of the central barrier of the potential is increased. We determine the nature of this transition through approximate analytic as well as numerical solutions of our model in the regime where the inter-particle interactions can be treated perturbatively. The degree of fragmentation of the condensate is characterized by the degrees of first-order and second-order spatial coherence across the barrier.Comment: 10 pages, 2 figures, submitted to Phys. Rev.

    Output of a pulsed atom laser

    Get PDF
    We study the output properties of a pulsed atom laser consisting of an interacting Bose-Einstein condensate (BEC) in a magnetic trap and an additional rf field transferring atoms to an untrapped Zeeman sublevel. For weak output coupling we calculate the dynamics of the decaying condensate population, of its chemical potential and the velocity of the output atoms analytically.Comment: 4 pages, RevTeX. Full ps file available on http://mpqibmr1.mpq.mpg.de:5000/~man

    Interference of Bose-Einstein condensates in momentum space

    Full text link
    We suggest an experiment to investigate the linear superposition of two spatially separated Bose-Einstein condensates. Due to the coherent combination of the two wave functions, the dynamic structure factor, measurable through inelastic photon scattering at high momentum transfer qq, is predicted to exhibit interference fringes with frequency period ΔΜ=q/md\Delta\nu = q/md where dd is the distance between the condensates. We show that the coherent configuration corresponds to an eigenstate of the physical observable measured in the experiment and that the relative phase of the condensates is hence created through the measurement process.Comment: 4 pages and 2 eps figure

    Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2

    Full text link
    Raman spectra were measured for mono-, bi- and trilayer graphene grown on SiC by solid state graphitization, whereby the number of layers was pre-assigned by angle-resolved ultraviolet photoemission spectroscopy. It was found that the only unambiguous fingerprint in Raman spectroscopy to identify the number of layers for graphene on SiC(0001) is the linewidth of the 2D (or D*) peak. The Raman spectra of epitaxial graphene show significant differences as compared to micromechanically cleaved graphene obtained from highly oriented pyrolytic graphite crystals. The G peak is found to be blue-shifted. The 2D peak does not exhibit any obvious shoulder structures but it is much broader and almost resembles a single-peak even for multilayers. Flakes of epitaxial graphene were transferred from SiC onto SiO2 for further Raman studies. A comparison of the Raman data obtained for graphene on SiC with data for epitaxial graphene transferred to SiO2 reveals that the G peak blue-shift is clearly due to the SiC substrate. The broadened 2D peak however stems from the graphene structure itself and not from the substrate.Comment: 27 pages, 8 figure

    A method for collective excitation of Bose-Einstein condensate

    Full text link
    It is shown that by an appropriate modification of the trapping potential one may create collective excitation in cold atom Bose-Einstein condensate. The proposed method is complementary to earlier suggestions. It seems to be feasible experimentally --- it requires only a proper change in time of the potential in atomic traps, as realized in laboratories already.Comment: 4 pages, 4 figures; major revision, several references added, interacting particles case adde

    Spatial coherence and density correlations of trapped Bose gases

    Full text link
    We study first and second order coherence of trapped dilute Bose gases using appropriate correlation functions. Special attention is given to the discussion of second order or density correlations. Except for a small region around the surface of a Bose-Einstein condensate the correlations can be accurately described as those of a locally homogeneous gas with a spatially varying chemical potential. The degrees of first and second order coherence are therefore functions of temperature, chemical potential, and position. The second order correlation function is governed both by the tendency of bosonic atoms to cluster and by a strong repulsion at small distances due to atomic interactions. In present experiments both effects are of comparable magnitude. Below the critical temperature the range of the bosonic correlation is affected by the presence of collective quasi-particle excitations. The results of some recent experiments on second and third order coherence are discussed. It is shown that the relation between the measured quantities and the correlation functions is much weaker than previously assumed.Comment: RevTeX, 25 pages with 7 Postscript figure
    • 

    corecore