249 research outputs found

    The Most Temperature-Adapted Corals Have an Achilles\u27 Heel

    Get PDF
    The corals of the Persian/Arabian Gulf are better adapted to temperature fluctuations than elsewhere in the Indo-Pacific. The Gulf is an extreme marine environment displaying the highest known summer water temperatures for any reef area. The small and shallow sea can be considered a good analogue to future conditions for the rest of the world’s oceans under global warming. The fact that corals can persist in such a demanding environment indicates that they have been able to acclimatize and selectively adapt to elevated temperature. The implication being that colonies elsewhere may be able to follow suit. This in turn provides hope that corals may, given sufficient time, similarly adapt to survive even in an impoverished form, under conditions of acidification-driven lowering of CaCO3 saturation state, a further consequence of raised atmospheric CO2. This paper demonstrates, however, that the uniquely adapted corals of the Gulf may, within the next three centuries, be threatened by a chronic habitat shortage brought about by the dissolution of the lithified seabed on which they rely for colonisation. This will occur due to modifications in the chemical composition of the Gulf waters due to climate change

    Employing Spatial Metrics in Urban Land-Use / Land-Cover Mapping: Comparing the Getis and Geary Indices

    Get PDF
    We examine the potential of supplementing per-pixel classifiers with the Getis index (Gi) in comparison to the Geary’s C on a subset of Ikonos imagery for urban land-use and land-cover classification. The test is pertinent considering that the Gi is generally considered more capable of identifying clusters of points with similar attributes. We quantify the impact of varying distance thresholds on the classification product and demonstrate how well the Gi identified cold and hot spots in comparison to Geary’s C. The exercise also provides a rule of thumb for effectively measuring spatial association in connection to adjacency. We are able to support existing literature that measuring local variability improves classification over spectral information alone. The results, however, neither confirm nor deny the challenge on whether measuring cold and hot spots rather than just spatial association improves classification accuracy

    Habitat Mapping in the Farasan Islands (Saudi Arabia) Using CASI and QuickBird Imagery

    Get PDF
    Map products derived from remote sensing technology increase our understanding and ability to manage tropical marine environments. The enhanced mapping capabilities of hyperspectral sensors are well understood; yet technology uptake, particularly for large scale tasks, has been slow. The study presented represents one of the largest hyperspectral projects to date, and paves the way towards increased use of this technology. Hyperspectral CASI-550 imagery and multispectral QuickBird imagery, was acquired over 3,168 km2 of the Farasan Islands. In addition to the typical image processing steps, inopportune water condensation in the CASI sensors lens necessitated further processing to remove an across-track artifact. We present a simple protocol for correcting this abnormality, utilizing an abundance of optically deep water to model and correct the error. Investment in optical, bathymetric, and other supporting field data, along with the acquisition of the QuickBird imagery was vital. Data pre-processing facilitated thematic mapping with accuracy comparable to other studies, while allowing the use of spectral unmixing to discriminate coral from within algae dominated patches in shallow water (0-5 m) environments. The unmixing model proved robust, was readily adaptable to the CASI sensor and provides additional habitat information beyond the level of thematic mapping alone

    Expression of Distinct Desmocollin Isoforms in Human Epidermis

    Get PDF
    Previous evidence suggested the presence of two distinct desmocollin isoforms in human epidermis. These isoforms have now been distinguished at the protein level using monoclonal and polyclonal antibodies against N-terminal fragments of desmosomal glycoprotein (DG) IV/V isolated from plantar callus and antibodies against a fusion protein containing the extracellular domain of DGII/III. Immune blotting of glycoprotein fractions from whole epidermis, plantar callus, psoriatic scales and cultured keratinocytes showed that intact DGIV/V and its proteolytic fragments consistently migrated faster than DGII/III during SDS-PAGE. The apparent Mr difference between the two isoforms was in the range 2-5 kD. DGIV/V was the predominant species in epidermal tissue but was much less prominent in cultured cells by immune-blotting and immune precipitation. This is consistent with the differentiation-related expression of desmocollins revealed by immunofluorescence. DGIV/V was strongly expressed in the upper spinous/granular layer of the epidermis whereas DGII/III was more prominent in the basal layers of he tissue. The DGIV/V monoclonal (LH50) recognized an N-terminal, Ca++-sensitive epitope, because its staining of unfixed epidermal tissue was makedly influenced by Ca++ levels. Ca++ inhibition was observed at concentrations as low as 50 μM, suggesting its possible physiologic significance. Ca++ inhibition of LH50 binding was also observed in an enzyme-linked immunosorbent assay system using denatured glycoproteins although higher concentrations were required. It remains to be seen whether direct effects of Ca++ on desmocollin conformation are involved in the regulations of keratinization by extracellular Ca++

    Detection of TMPRSS2 : ERG fusion gene in circulating prostate cancer cells

    Get PDF
    Creative Commons Attribution-NonCommercial-Share Alike 3.0 license (CC BY-NC SA)Aim: To investigate the existence of TMPRSS2:ERG fusion gene in circulating tumor cells (CTC) from prostate cancer patients and its potential in monitoring tumor metastasis. Methods: We analyzed the frequency of TMPRSS2: ERG and TMPRSS2:ETV1 transcripts in 27 prostate cancer biopsies from prostatectomies, and TMPRSS2:ERG transcripts in CTC isolated from 15 patients with advanced androgen independent disease using reverse transcription polymerase chain reaction (RT-PCR). Fluorescence in situ hybridization (FISH) was applied to analyze the genomic truncation of ERG, which is the result of TMPRSS2:ERG fusion in 10 of the 15 CTC samples. Results: TMPRSS2: ERG transcripts were found in 44% of our samples, but we did not detect expression of TMPRSS2:ETV1. Using FISH analysis we detected chromosomal rearrangements affecting the ERG gene in 6 of 10 CTC samples, including 1 case with associated TMPRSS2:ERG fusion at the primary site. However, TMPRSS2:ERG transcripts were not detected in any of the 15 CTC samples, including the 10 cases analyzed by FISH. Conclusion: Although further study is required to address the association between TMPRSS2:ERG fusion and prostate cancer metastasis, detection of genomic truncation of the ERG gene by FISH analysis could be useful for monitoring the appearance of CTC and the potential for prostate cancer metastasis.Peer reviewedFinal Published versio

    Present Limits to Heat-Adaptability in Corals and Population-Level Responses to Climate Extremes

    Get PDF
    Climate change scenarios suggest an increase in tropical ocean temperature by 1–3°C by 2099, potentially killing many coral reefs. But Arabian/Persian Gulf corals already exist in this future thermal environment predicted for most tropical reefs and survived severe bleaching in 2010, one of the hottest years on record. Exposure to 33–35°C was on average twice as long as in non-bleaching years. Gulf corals bleached after exposure to temperatures above 34°C for a total of 8 weeks of which 3 weeks were above 35°C. This is more heat than any other corals can survive, providing an insight into the present limits of holobiont adaptation. We show that average temperatures as well as heat-waves in the Gulf have been increasing, that coral population levels will fluctuate strongly, and reef-building capability will be compromised. This, in combination with ocean acidification and significant local threats posed by rampant coastal development puts even these most heat-adapted corals at risk. WWF considers the Gulf ecoregion as “critically endangered”. We argue here that Gulf corals should be considered for assisted migration to the tropical Indo-Pacific. This would have the double benefit of avoiding local extinction of the world's most heat-adapted holobionts while at the same time introducing their genetic information to populations naïve to such extremes, potentially assisting their survival. Thus, the heat-adaptation acquired by Gulf corals over 6 k, could benefit tropical Indo-Pacific corals who have <100 y until they will experience a similarly harsh climate. Population models suggest that the heat-adapted corals could become dominant on tropical reefs within ∼20 years

    Atlas of Saudi Arabian Red Sea Marine Habitats

    Get PDF
    The Red Sea is a narrow, but relatively deep, oceanic trough that extends for over 1900 km, between 13º and 28º N latitude. It has a total surface area of roughly 438,000 km², with a width of approximately 180 km in the north, and 354 km at its widest point in the south. The Red Sea narrows to about 29 km in the Strait of Bab el Mandab, where it joins the Gulf of Aden and the Indian Ocean. The maximum depth is over 2200 m, with an average depth of 490 m. The Red Sea is shallowest at the southern end, with depths of only 130 m in the Strait of Bab el Mandab. It is the world’s northernmost tropical sea, with extensive shallow shelves that support complex coral reefs and associated ecosystems. The Red Sea is part of the tropical Indo-Pacific Ocean, which encompasses the largest marine ecosystem on earth and also the most diverse. Much of the Saudi Arabian Red Sea coastline is characterized by coastal fringing reefs that are narrow, extending tens of meters from shore before plummeting to deep water. However, several regions in Saudi Arabia contain extensive seagrass beds, offshore reef habitats, mangroves, and algal flats. These areas support a wide range of reef morphologies, such as barrier reefs, patch reefs, ridge reefs, atolls, tower reefs, pinnacles, pillars, and spur and groove structures, as well as diverse coral communities growing on algalderived limestone structures (Sheppard et al. 1992). Over a four year period, the Living Oceans Foundation has been involved in a massive scale marine habitat research project in the Red Sea. The results are now published in this first ever atlas of the Red Sea marine habitats of offshore coral reefs. It is available for download in both English and Arabic.https://nsuworks.nova.edu/occ_facbooks/1042/thumbnail.jp

    Coral Bleaching and Mortality in the Chagos Archipelago

    Get PDF
    The atolls and coral banks of the Chagos Archipelago (British Indian Ocean Territory) in the central Indian Ocean were severely affected by the El Niño Southern Oscillation (ENSO) thermal event that started in 2015 and which lasted for nearly two years. On these reefs, coral mortality reduced scleractinian coral cover from 40%–50% to <10% and commonly to only about 5% in water less than 15 m depth. The three-dimensional structure of the reefs was significantly reduced as a result, and the prolonged warming almost eliminated soft corals. Most atolls of the archipelago are uninhabited, so any changes are driven by broad environmental changes rather than by direct, local anthropogenic effects. Coral cover was first measured in 1978, temperature loggers have recorded water temperature at various depths for the last 11 years, and the results of the recent warming event are placed in this context. Over this time, cover has declined severely along with a general rise in water temperature of one-third of a degree Celsius on ocean reefs and by more than one-half of a degree Celsius in lagoons. Major fluctuations of coral cover caused by warm episodes have sometimes, but not always, coincided with ENSO events and have occurred on top of the increasing trend in background temperatures. Juvenile coral populations have also recently severely declined following the mortality of the adults. Estimates of calcification suggest a marked reduction, from a state of vigorous reef growth that had not long recovered from the earlier severe warming event of 1998, to a state of net erosion. Predictions suggest that recurrences of mass mortalities will take place too frequently for any significant recovery of reef health in these atolls by the late 2020s

    Differential uranyl(v) oxo-group bonding between the uranium and metal cations from groups 1, 2, 4, and 12; a high energy resolution X-ray absorption, computational, and synthetic study

    Get PDF
    The uranyl(VI) ‘Pacman’ complex [(UO₂)(py)(H₂L)] A (L = polypyrrolic Schiff-base macrocycle) is reduced by Cp₂Ti(η²-Me₃SiC[triple bond, length as m-dash]CSiMe₃) and [Cp₂TiCl]₂ to oxo-titanated uranyl(V) complexes [(py)(Cp₂TiIIITi^{III}OUO)(py)(H₂L)] 1 and [(ClCp₂TiIVTi^{IV}OUO)(py)(H₂L)] 2. Combination of ZrIIZr^{II} and ZrIVZr^{IV} synthons with A yields the first ZrIVZr^{IV}–uranyl(V) complex, [(ClCp₂ZrOUO)(py)(H₂L)] 3. Similarly, combinations of Ae0Ae^{0} and AeIIAe^{II} synthons (Ae = alkaline earth) afford the mono-oxo metalated uranyl(V) complexes [(py)₂(ClMgOUO)(py)(H₂L)] 4, [(py)₂(thf)₂(ICaOUO)(py) (H₂L)] 5; the zinc complexes [(py)₂(XZnOUO)(py)(H₂L)] (X = Cl 6, I 7) are formed in a similar manner. In contrast, the direct reactions of Rb or Cs metal with A generate the first mono-rubidiated and mono-caesiated uranyl(V) complexes; monomeric [(py)₃(RbOUO)(py)(H₂L)] 8 and hexameric [(MOUO)(py)(H₂L)]₆ (M = Rb 8b or Cs 9). In these uranyl(V) complexes, the pyrrole N–H atoms show strengthened hydrogen-bonding interactions with the endo-oxos, classified computationally as moderate-strength hydrogen bonds. Computational DFT MO (density functional theory molecular orbital) and EDA (energy decomposition analysis), uranium M₄ edge HR-XANES (High Energy Resolution X-ray Absorption Near Edge Structure) and 3d4f RIXS (Resonant Inelastic X-ray Scattering) have been used (the latter two for the first time for uranyl(V) in 7 (ZnI)) to compare the covalent character in the UVU^{V}–O and O–M bonds and show the 5f orbitals in uranyl(VI) complex A are unexpectedly more delocalised than in the uranyl(V) 7 (ZnI) complex. The OexoO_{exo}–Zn bonds have a larger covalent contribution compared to the Mg–OexoO_{exo}/Ca–OexoO_{exo} bonds, and more covalency is found in the U–OexoO_{exo} bond in 7 (ZnI), in agreement with the calculations
    corecore