855 research outputs found

    The friction factor of two-dimensional rough-boundary turbulent soap film flows

    Full text link
    We use momentum transfer arguments to predict the friction factor ff in two-dimensional turbulent soap-film flows with rough boundaries (an analogue of three-dimensional pipe flow) as a function of Reynolds number Re and roughness rr, considering separately the inverse energy cascade and the forward enstrophy cascade. At intermediate Re, we predict a Blasius-like friction factor scaling of fRe1/2f\propto\textrm{Re}^{-1/2} in flows dominated by the enstrophy cascade, distinct from the energy cascade scaling of Re1/4\textrm{Re}^{-1/4}. For large Re, frf \sim r in the enstrophy-dominated case. We use conformal map techniques to perform direct numerical simulations that are in satisfactory agreement with theory, and exhibit data collapse scaling of roughness-induced criticality, previously shown to arise in the 3D pipe data of Nikuradse.Comment: 4 pages, 3 figure

    The asymmetric sandwich theorem

    Full text link
    We discuss the asymmetric sandwich theorem, a generalization of the Hahn-Banach theorem. As applications, we derive various results on the existence of linear functionals that include bivariate, trivariate and quadrivariate generalizations of the Fenchel duality theorem. Most of the results are about affine functions defined on convex subsets of vector spaces, rather than linear functions defined on vector spaces. We consider both results that use a simple boundedness hypothesis (as in Rockafellar's version of the Fenchel duality theorem) and also results that use Baire's theorem (as in the Robinson-Attouch-Brezis version of the Fenchel duality theorem). This paper also contains some new results about metrizable topological vector spaces that are not necessarily locally convex.Comment: 17 page

    Minimizing Induced Drag with Weight Distribution, Lift Distribution, Wingspan, and Wing-Structure Weight

    Get PDF
    Because the wing-structure weight required to support the critical wing section bending moments is a function of wingspan, net weight, weight distribution, and lift distribution, there exists an optimum wingspan and wing-structure weight are presented for rectangular wings with four different sets of design constraints. These design constraints are fixed lift distribution and net weight combined with 1) fixed maximum stress and wing loading, 2) fixed maximum deflection and wing loading, 3) fixed maximum stress and stall speed and 4) fixed maximum deflection and stall speed. For each of these analytic solutions, the optimum wing-structure weight is found to depend only on the net weight, independent of the arbitrary fixed lift distribution. Analytic solutions for optimum weight and lift distributions are also presented for the same four sets of design constraints. Depending on the design constraints, the optimum lift distribution can differ significantly from the elliptic lift distribution. Solutions for two example wing designs are presented, which demonstrate how the induced drag varies with lift distribution, wingspan, and wing-structure weight in the design space near the optimum solution. Although the analytic solutions presented here are restricted to rectangular wings, these solutions provide excellent test cases for verifying numerical algorithms used for more general multidisciplinary analysis and optimization

    Local spectroscopy and atomic imaging of tunneling current, forces and dissipation on graphite

    Get PDF
    Theory predicts that the currents in scanning tunneling microscopy (STM) and the attractive forces measured in atomic force microscopy (AFM) are directly related. Atomic images obtained in an attractive AFM mode should therefore be redundant because they should be \emph{similar} to STM. Here, we show that while the distance dependence of current and force is similar for graphite, constant-height AFM- and STM images differ substantially depending on distance and bias voltage. We perform spectroscopy of the tunneling current, the frequency shift and the damping signal at high-symmetry lattice sites of the graphite (0001) surface. The dissipation signal is about twice as sensitive to distance as the frequency shift, explained by the Prandtl-Tomlinson model of atomic friction.Comment: 4 pages, 4 figures, accepted at Physical Review Letter

    On the Phenomenology of Hydrodynamic Shear Turbulence

    Full text link
    The question of a purely hydrodynamic origin of turbulence in accretion disks is reexamined, on the basis of a large body of experimental and numerical evidence on various subcritical (i.e., linearly stable) hydrodynamic flows. One of the main points of this paper is that the length scale and velocity fluctuation amplitude which are characteristic of turbulent transport in these flows scale like Rem1/2Re_m^{-1/2}, where RemRe_m is the minimal Reynolds number for the onset of fully developed turbulence. From this scaling, a simple explanation of the dependence of RemRe_m with relative gap width in subcritical Couette-Taylor flows is developed. It is also argued that flows in the shearing sheet limit should be turbulent, and that the lack of turbulence in all such simulations performed to date is most likely due to a lack of resolution, as a consequence of the effect of the Coriolis force on the large scale fluctuations of turbulent flows. These results imply that accretion flows should be turbulent through hydrodynamic processes. If this is the case, the Shakura-Sunyaev α\alpha parameter is constrained to lie in the range 10310110^{-3}-10^{-1} in accretion disks, depending on unknown features of the mechanism which sustains turbulence. Whether the hydrodynamic source of turbulence is more efficient than the MHD one where present is an open question.Comment: 31 pages, 3 figures. Accepted for publication in Ap

    Structural lubricity: Role of dimension and symmetry

    Full text link
    When two chemically passivated solids are brought into contact, interfacial interactions between the solids compete with intrabulk elastic forces. The relative importance of these interactions, which are length-scale dependent, will be estimated using scaling arguments. If elastic interactions dominate on all length scales, solids will move as essentially rigid objects. This would imply superlow kinetic friction in UHV, provided wear was absent. The results of the scaling study depend on the symmetry of the surfaces and the dimensionalities of interface and solids. Some examples are discussed explicitly such as contacts between disordered three-dimensional solids and linear bearings realized from multiwall carbon nanotubes.Comment: 7 pages, 1 figur

    An Aerodynamic Model for Vane-Type Vortex Generators

    Get PDF

    Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution

    Get PDF
    Results on the Prandtl-Blasius type kinetic and thermal boundary layer thicknesses in turbulent Rayleigh-B\'enard convection in a broad range of Prandtl numbers are presented. By solving the laminar Prandtl-Blasius boundary layer equations, we calculate the ratio of the thermal and kinetic boundary layer thicknesses, which depends on the Prandtl number Pr only. It is approximated as 0.588Pr1/20.588Pr^{-1/2} for PrPrPr\ll Pr^* and as 0.982Pr1/30.982 Pr^{-1/3} for PrPrPr^*\ll\Pr, with Pr=0.046Pr^*= 0.046. Comparison of the Prandtl--Blasius velocity boundary layer thickness with that evaluated in the direct numerical simulations by Stevens, Verzicco, and Lohse (J. Fluid Mech. 643, 495 (2010)) gives very good agreement. Based on the Prandtl--Blasius type considerations, we derive a lower-bound estimate for the minimum number of the computational mesh nodes, required to conduct accurate numerical simulations of moderately high (boundary layer dominated) turbulent Rayleigh-B\'enard convection, in the thermal and kinetic boundary layers close to bottom and top plates. It is shown that the number of required nodes within each boundary layer depends on Nu and Pr and grows with the Rayleigh number Ra not slower than \sim\Ra^{0.15}. This estimate agrees excellently with empirical results, which were based on the convergence of the Nusselt number in numerical simulations

    Turbulent Friction in Rough Pipes and the Energy Spectrum of the Phenomenological Theory

    Get PDF
    The classical experiments on turbulent friction in rough pipes were performed by J. Nikuradse in the 1930's. Seventy years later, they continue to defy theory. Here we model Nikuradse's experiments using the phenomenological theory of Kolmog\'orov, a theory that is widely thought to be applicable only to highly idealized flows. Our results include both the empirical scalings of Blasius and Strickler, and are otherwise in minute qualitative agreement with the experiments; they suggest that the phenomenological theory may be relevant to other flows of practical interest; and they unveil the existence of close ties between two milestones of experimental and theoretical turbulence.Comment: Accepted for publication in PRL; 4 pages, 4 figures; revised versio

    Two-Dimensional Hydrodynamics of Pre-Core Collapse: Oxygen Shell Burning

    Get PDF
    By direct hydrodynamic simulation, using the Piecewise Parabolic Method (PPM) code PROMETHEUS, we study the properties of a convective oxygen burning shell in a SN 1987A progenitor star prior to collapse. The convection is too heterogeneous and dynamic to be well approximated by one-dimensional diffusion-like algorithms which have previously been used for this epoch. Qualitatively new phenomena are seen. The simulations are two-dimensional, with good resolution in radius and angle, and use a large (90-degree) slice centered at the equator. The microphysics and the initial model were carefully treated. Many of the qualitative features of previous multi-dimensional simulations of convection are seen, including large kinetic and acoustic energy fluxes, which are not accounted for by mixing length theory. Small but significant amounts of carbon-12 are mixed non-uniformly into the oxygen burning convection zone, resulting in hot spots of nuclear energy production which are more than an order of magnitude more energetic than the oxygen flame itself. Density perturbations (up to 8%) occur at the `edges' of the convective zone and are the result of gravity waves generated by interaction of penetrating flows into the stable region. Perturbations of temperature and electron fraction at the base of the convective zone are of sufficient magnitude to create angular inhomogeneities in explosive nucleosynthesis products, and need to be included in quantitative estimates of yields. Combined with the plume-like velocity structure arising from convection, the perturbations will contribute to the mixing of nickel-56 throughout supernovae envelopes. Runs of different resolution, and angular extent, were performed to test the robustness of theseComment: For mpeg movies of these simulations, see http://www.astrophysics.arizona.edu/movies.html Submitted to the Astrophysical Journa
    corecore