656 research outputs found

    Processing and quality of cashmere tops for ultra-fine wool worsted blend fabrics

    Full text link
    This study has focussed on three main areas. First, an evaluation of the physical attributes of cashmere tops available to commercial spinners; second, the influence of processing variables on the efficiency of producing cashmere tops from raw Australian cashmere; and third, the influence of design of cashmere ultrafine wool blends on the fibre curvature of tops. Testing the physical attributes of cashmere tops from traditional and new sources of supply, was followed by statistical analyses based on factors of origin, processor and other determinants. The analyses demonstrated important processor effects and also that cashmere from different origins shows commercially important variations in fibre attributes. It was possible to efficiently produce Australian cashmere tops with Hauteur, tenacity, extension, softness and residual guard hairs quality attributes equivalent to those observed in the best cashmere tops. The blending of cashmere with wool resulted in a reduction of the mean fibre curvature of the blend compared with the unblended wool. The present work demonstrated that the fibre curvature properties of blended low crimp ultrafine wool tops were closer to the properties of pure cashmere tops than were tops made from blended standard high crimp ultrafine wool. The attributes of textiles made from the relatively rare Australian low curvature cashmere could enhance the marketability of both Australian cashmere and low curvature wool.<br /

    Repetitive Transcranial Magnetic Stimulation Affects behavior by Biasing Endogenous Cortical Oscillations

    Get PDF
    A governing assumption about repetitive transcranial magnetic stimulation (rTMS) has been that it interferes with task-related neuronal activity ā€“ in effect, by ā€œinjecting noiseā€ into the brain ā€“ and thereby disrupts behavior. Recent reports of rTMS-produced behavioral enhancement, however, call this assumption into question. We investigated the neurophysiological effects of rTMS delivered during the delay period of a visual working memory task by simultaneously recording brain activity with electroencephalography (EEG). Subjects performed visual working memory for locations or for shapes, and in half the trials a 10-Hz train of rTMS was delivered to the superior parietal lobule (SPL) or a control brain area. The wide range of individual differences in the effects of rTMS on task accuracy, from improvement to impairment, was predicted by individual differences in the effect of rTMS on power in the alpha-band of the EEG (āˆ¼10 Hz): a decrease in alpha-band power corresponded to improved performance, whereas an increase in alpha-band power corresponded to the opposite. The EEG effect was localized to cortical sources encompassing the frontal eye fields and the intraparietal sulcus, and was specific to task (location, but not object memory) and to rTMS target (SPL, not control area). Furthermore, for the same task condition, rTMS-induced changes in cross-frequency phase synchrony between alpha- and gamma-band (>40 Hz) oscillations predicted changes in behavior. These results suggest that alpha-band oscillations play an active role cognitive processes and do not simply reflect absence of processing. Furthermore, this study shows that the complex effects of rTMS on behavior can result from biasing endogenous patterns of network-level oscillations

    Increased Alpha-Band Power during the Retention of Shapes and Shape-Location Associations in Visual Short-Term Memory

    Get PDF
    Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band (~8ā€“14ā€‰Hz) power during the delay period of delayed-recognition short-term memory tasks. These increases have been proposed to reflect the inhibition, for example, of cortical areas representing task-irrelevant information, or of potentially interfering representations from previous trials. Another possibility, however, is that elevated delay-period alpha-band power (DPABP) reflects the selection and maintenance of information, rather than, or in addition to, the inhibition of task-irrelevant information. In the present study, we explored these possibilities using a delayed-recognition paradigm in which the presence and task relevance of shape information was systematically manipulated across trial blocks and electroencephalographic was used to measure alpha-band power. In the first trial block, participants remembered locations marked by identical black circles. The second block featured the same instructions, but locations were marked by unique shapes. The third block featured the same stimulus presentation as the second, but with pretrial instructions indicating, on a trial-by-trial basis, whether memory for shape or location was required, the other dimension being irrelevant. In the final block, participants remembered the unique pairing of shape and location for each stimulus. Results revealed minimal DPABP in each of the location-memory conditions, whether locations were marked with identical circles or with unique task-irrelevant shapes. In contrast, alpha-band power increases were observed in both the shape-memory condition, in which location was task irrelevant, and in the critical final condition, in which both shape and location were task relevant. These results provide support for the proposal that alpha-band oscillations reflect the retention of shape information and/or shapeā€“location associations in short-term memory

    Death of the TonB Shuttle Hypothesis

    Get PDF
    A complex of ExbB, ExbD, and TonB couples cytoplasmic membrane (CM) proton motive force (pmf) to the active transport of large, scarce, or important nutrients across the outer membrane (OM). TonB interacts with OM transporters to enable ligand transport. Several mechanical models and a shuttle model explain how TonB might work. In the mechanical models, TonB remains attached to the CM during energy transduction, while in the shuttle model the TonB N terminus leaves the CM to deliver conformationally stored potential energy to OM transporters. Previous studies suggested that TonB did not shuttle based on the activity of a GFPā€“TonB fusion that was anchored in the CM by the GFP moiety. When we recreated the GFPā€“TonB fusion to extend those studies, in our hands it was proteolytically unstable, giving rise to potentially shuttleable degradation products. Recently, we discovered that a fusion of the Vibrio cholerae ToxR cytoplasmic domain to the N terminus of TonB was proteolytically stable. ToxRā€“TonB was able to be completely converted into a proteinase K-resistant conformation in response to loss of pmf in spheroplasts and exhibited an ability to form a pmf-dependent formaldehyde crosslink to ExbD, both indicators of its location in the CM. Most importantly, ToxRā€“TonB had the same relative specific activity as wild-type TonB. Taken together, these results provide conclusive evidence that TonB does not shuttle during energy transduction. We had previously concluded that TonB shuttles based on the use of an Oregon GreenĀ® 488 maleimide probe to assess periplasmic accessibility of N-terminal TonB. Here we show that the probe was permeant to the CM, thus permitting the labeling of the TonB N-terminus. These former results are reinterpreted in the context that TonB does not shuttle, and suggest the existence of a signal transduction pathway from OM to cytoplasm

    Neural evidence for a distinction between short-term memory and the focus of attention

    Full text link
    It is widely assumed that the short-term retention of information is accomplished via maintenance of an active neural trace. However, we demonstrate that memory can be preserved across a brief delay despite the apparent loss of sustained representations. Delay period activity may, in fact, reflect the focus of attention, rather than STM. We unconfounded attention and memory by causing external and internal shifts of attention away from items that were being actively retained. Multivariate pattern analysis of fMRI indicated that only items within the focus of attention elicited an active neural trace. Activity corresponding to representations of items outside the focus quickly dropped to baseline. Nevertheless, this information was remembered after a brief delay. Our data also show that refocusing attention toward a previously unattended memory item can reactivate its neural signature. The loss of sustained activity has long been thought to indicate a disruption of STM, but our results suggest that, even for small memory loads not exceeding the capacity limits of STM, the active maintenance of a stimulus representation may not be necessary for its short-term retention

    Unexpected depletion in plasma choline and phosphatidylcholine concentrations in a pregnant woman with bipolar affective disorder being treated with lithuim, haloperidol and benztropine: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Patients with bipolar affective disorder can be effectively managed with pharmacological intervention. This case report describes a pregnant woman with a ten-year history of bipolar affective disorder that was being treated with lithium, haloperidol and benztropine.</p> <p>Case presentation</p> <p>The patient had a normal pregnancy, but developed an elevated blood pressure and started to lose weight at 36 weeks of gestation. During pregnancy, plasma concentrations of choline and phosphatidylcholine are increased to meet the demands of the foetus. However, our findings in this case included depletion of plasma choline and phosphatidylcholine concentrations. Other unusual outcomes included low placental weight and low infant birth weight.</p> <p>Conclusion</p> <p>This report suggests that the pharmacological management of this patient could possibly account for the findings.</p

    Evaluation of the fineness of degummed bast fibers

    Full text link
    Fiber fineness characteristics are important for yarn production and quality. In this paper, degummed bast fibers such as hemp, flax and ramie have been examined with the Optical Fiber Diameter Analyzer (OFDA100 and OFDA2000) systems for fiber fineness, in comparison with the conventional image analysis and the Wira airflow tester. The correlation between the results from these measurements was analysed. The results indicate that there is a significant linear co-relation between the fiber fineness measurement results obtained from those different systems. In addition, the mean fiber width and its coefficient of variation obtained from the OFDA100 system are smaller than those obtained from the OFDA2000 system, due to the difference in sample preparation methods. The OFDA2000 system can also measure the fiber fineness profile along the bast fiber plants, which can be useful for plant breeding. <br /

    Conditional gene vectors regulated in cis

    Get PDF
    Non-integrating gene vectors, which are stably and extrachromosomally maintained in transduced cells would be perfect tools to support long-term expression of therapeutic genes but preserve the genomic integrity of the cellular host. Small extrachromosomal plasmids share some of these ideal characteristics but are primarily based on virus blueprints. These plasmids are dependent on viral trans-acting factors but they can replicate their DNA molecules in synchrony with the chromosome of the cellular host and segregate to daughter cells in an autonomous fashion. On the basis of the concept of the latent origin of DNA replication of Epstein-Barr virus, oriP, we devised novel derivatives, which exclusively rely on an artificial replication factor for both nuclear retention and replication of plasmid DNA. In addition, an allosteric switch regulates the fate of the plasmid molecules, which are rapidly lost upon addition of doxycycline. Conditional maintenance of these novel plasmid vectors allows the reversible transfer of genetic information into target cells for the first time
    • ā€¦
    corecore