14 research outputs found

    Resonant optical electron transfer in one-dimensional multiwell structures

    Full text link
    We consider coherent single-electron dynamics in the one-dimensional nanostructure under resonant electromagnetic pulse. The structure is composed of two deep quantum wells positioned at the edges of structure and separated by a sequence of shallow internal wells. We show that complete electron transfer between the states localized in the edge wells through one of excited delocalized states can take place at discrete set of times provided that the pulse frequency matches one of resonant transition frequencies. The transfer time varies from several tens to several hundreds of picoseconds and depends on the structure and pulse parameters. The results obtained in this paper can be applied to the developments of the quantum networks used in quantum communications and/or quantum information processing.Comment: 25 pages,16 figure

    Novel roles of the chemorepellent axon guidance molecule RGMa in cell migration and adhesion

    Get PDF
    The repulsive guidance molecule A (RGMa) is a contact-mediated axon guidance molecule that has significant roles in central nervous system (CNS) development. Here we have examined whether RGMa has novel roles in cell migration and cell adhesion outside the nervous system. RGMa was found to stimulate cell migration from Xenopus animal cap explants in a neogenin-dependent and BMP-independent manner. RGMa also stimulated the adhesion of Xenopus animal cap cells, and this adhesion was dependent on neogenin and independent of calcium. To begin to functionally characterize the role of specific domains in RGMa, we assessed the migratory and adhesive activities of deletion mutants. RGMa lacking the partial von Willebrand factor type D (vWF) domain preferentially perturbed cell adhesion, while mutants lacking the RGD motif affected cell migration. We also revealed that manipulating the levels of RGMa in vivo caused major migration defects during Xenopus gastrulation. We have revealed here novel roles of RGMa in cell migration and adhesion and demonstrated that perturbations to the homeostasis of RGMa expression can severely disrupt major morphogenetic events. These results have implications for understanding the role of RGMa in both health and disease

    Genomic Targets of Brachyury (T) in Differentiating Mouse Embryonic Stem Cells

    Get PDF
    The T-box transcription factor Brachyury (T) is essential for formation of the posterior mesoderm and the notochord in vertebrate embryos. Work in the frog and the zebrafish has identified some direct genomic targets of Brachyury, but little is known about Brachyury targets in the mouse.Here we use chromatin immunoprecipitation and mouse promoter microarrays to identify targets of Brachyury in embryoid bodies formed from differentiating mouse ES cells. The targets we identify are enriched for sequence-specific DNA binding proteins and include components of signal transduction pathways that direct cell fate in the primitive streak and tailbud of the early embryo. Expression of some of these targets, such as Axin2, Fgf8 and Wnt3a, is down regulated in Brachyury mutant embryos and we demonstrate that they are also Brachyury targets in the human. Surprisingly, we do not observe enrichment of the canonical T-domain DNA binding sequence 5'-TCACACCT-3' in the vicinity of most Brachyury target genes. Rather, we have identified an (AC)(n) repeat sequence, which is conserved in the rat but not in human, zebrafish or Xenopus. We do not understand the significance of this sequence, but speculate that it enhances transcription factor binding in the regulatory regions of Brachyury target genes in rodents.Our work identifies the genomic targets of a key regulator of mesoderm formation in the early mouse embryo, thereby providing insights into the Brachyury-driven genetic regulatory network and allowing us to compare the function of Brachyury in different species

    Transient disruption of spermatogenesis by deregulated expression of neurturin in testis

    No full text
    Two related ligands, glial cell line-derived neurotrophic factor (GDNF) and neurturin (NRTN), are expressed by Sertoli cells, but their cognate ligand-binding co-receptors, GDNF family receptor alpha1 and alpha2, are displayed by different germ cells suggesting different targets for the ligands. GDNF regulates cell fate decision of undifferentiated spermatogonia 'Science 287 (2000) 1489'. The role of NRTN was now approached by targeted overexpression in mouse testis. Between 3 and 5 weeks of age, transient degeneration of spermatogenic cells was observed in approximately 20% of all five transgenic lines generated. Spermatids and pachytene spermatocytes underwent segmental degeneration, if the rete testis was undilated. When it was dilated, the spermatids and spermatocytes were more generally depleted. After 5 weeks of age, spermatogenic defects were no more observed and the NRTN overexpressing mice were fertile. The data suggest that NRTN might regulate survival and differentiation of spermatocytes and spermatids, but the low penetrance indicates that either the transgene expression has not been high enough or NRTN is not as essential as GDNF for spermatogenesi
    corecore