3,738 research outputs found

    Measuring the SUSY Breaking Scale at the LHC in the Slepton NLSP Scenario of GMSB Models

    Get PDF
    We report a study on the measurement of the SUSY breaking scale sqrt(F) in the framework of gauge-mediated supersymmetry breaking (GMSB) models at the LHC. The work is focused on the GMSB scenario where a stau is the next-to-lightest SUSY particle (NLSP) and decays into a gravitino with lifetime c*tau_NLSP in the range 0.5 m to 1 km. We study the identification of long-lived sleptons using the momentum and time of flight measurements in the muon chambers of the ATLAS experiment. A realistic evaluation of the statistical and systematic uncertainties on the measurement of the slepton mass and lifetime is performed, based on a detailed simulation of the detector response. Accessible range and precision on sqrt(F) achievable with a counting method are assessed. Many features of our analysis can be extended to the study of different theoretical frameworks with similar signatures at the LHC.Comment: 28 pages, 12 figures (18 eps files). Revised version v2(published in JHEP): Some important corrections and additions to v

    Reconstructing Supersymmetry at ILC/LHC

    Full text link
    Coherent analyses of experimental results from LHC and ILC will allow us to draw a comprehensive and precise picture of the supersymmetric particle sector. Based on this platform the fundamental supersymmetric theory can be reconstructed at the high scale which is potentially close to the Planck scale. This procedure will be reviewed for three characteristic examples: minimal supergravity as the paradigm; a left-right symmetric extension incorporating intermediate mass scales; and a specific realization of string effective theories.Comment: published in Proceedings of the Ustron Conference 2005; technical LaTeX problem correcte

    Aspects of GMSB Phenomenology at TeV Colliders

    Get PDF
    The status of two on-going studies concerning important aspects of the phenomenology of gauge-mediated supersymmetry breaking (GMSB) models at TeV colliders is reported. The first study deals with the characteristics of the light Higgs boson spectrum allowed by the (minimal and non-minimal) GMSB framework. Today's most accurate GMSB model generation and two-loop Feynman-diagrammatic calculation of m_h have been combined. The Higgs masses are shown in dependence of various model parameters at the messenger and electroweak scales. In the minimal model, an upper limit on m_h of about 124 GeV is found for m_t = 175 GeV. The second study is focused on the measurement of the fundamental SUSY breaking scale sqrt(F) at the LHC in the GMSB scenario where a stau is the next-to-lightest SUSY particle (NLSP) and decays into a gravitino with c*tau_NLSP in the range 0.5 m to 1 km. This implies the measurement of mass and lifetime of long lived sleptons. The identification is performed by determining the time of flight in the ATLAS muon chambers. Accessible range and precision on sqrt(F) achievable with a counting method are assessed.Comment: 22 pages, 9 figures (12 eps files). Report of the GMSB SUSY Working Group, Workshop "Physics at TeV Colliders", Les Houches, 7-18 June 1999. Revised version v3: A few typos correcte

    Monojet searches for momentum-dependent dark matter interactions

    Get PDF
    We consider minimal dark matter scenarios featuring momentum-dependent couplings of the dark sector to the Standard Model. We derive constraints from existing LHC searches in the monojet channel, estimate the future LHC sensitivity for an integrated luminosity of 300 fb−1, and compare with models exhibiting conventional momentum-independent interactions with the dark sector. In addition to being well motivated by (composite) pseudo-Goldstone dark matter scenarios, momentum-dependent couplings are interesting as they weaken direct detection constraints. For a specific dark matter mass, the LHC turns out to be sensitive to smaller signal cross-sections in the momentum-dependent case, by virtue of the harder jet transverse-momentum distribution

    Characterization and Modeling of Non-Uniform Charge Collection in CVD Diamond Pixel Detectors

    Full text link
    A pixel detector with a CVD diamond sensor has been studied in a 180 GeV/c pion beam. The charge collection properties of the diamond sensor were studied as a function of the track position, which was measured with a silicon microstrip telescope. Non-uniformities were observed on a length scale comparable to the diamond crystallites size. In some regions of the sensor, the charge drift appears to have a component parallel to the sensor surface (i.e., normal to the applied electric field) resulting in systematic residuals between the track position and the hits position as large as 40 Ό\mum. A numerical simulation of the charge drift in polycrystalline diamond was developed to compute the signal induced on the electrodes by the electrons and holes released by the passing particles. The simulation takes into account the crystallite structure, non-uniform trapping across the sensor, diffusion and polarization effects. It is in qualitative agreement with the data. Additional lateral electric field components result from the non-uniform trapping of charges in the bulk. These provide a good explanation for the large residuals observed.Comment: Accepted by Nucl. Instr. and Met

    Constraining Dark Matter in the MSSM at the LHC

    Full text link
    In the event that R-Parity conserving supersymmetry (SUSY) is discovered at the LHC, a key issue which will need to be addressed will be the consistency of that signal with astrophysical and non-accelerator constraints on SUSY Dark Matter. This issue is studied for the SPA benchmark model based on measurements of end-points and thresholds in the invariant mass spectra of various combinations of leptons and jets. These measurements are used to constrain the soft SUSY breaking parameters at the electroweak scale in a general MSSM model. Based on these constraints, we assess the accuracy with which the Dark Matter relic density can be measured.Comment: 21 pages, 12 figure

    Radiative Neutralino Decay in Split Supersymmetry

    Full text link
    Radiative neutralino decay χ20−>χ10Îł\chi^0_2 -> \chi^0_1\gamma is studied in a Split Supersymmetric scenario, and compared with mSUGRA and MSSM. This 1-loop process has a transition amplitude which is often quite small, but has the advantage of providing a very clear and distinct signature: electromagnetic radiation plus missing energy. In Split Supersymmetry this radiative decay is in direct competition with the tree-level three-body decay χ20−>χ10ff‟\chi^0_2 -> \chi^0_1 f\overline f, and we obtain large values for the branching ratio B(χ20−>χ10Îł)B(\chi^0_2 -> \chi^0_1\gamma) which can be close to unity in the region M2∌M1M_2 \sim M_1. Furthermore, the value for the radiative neutralino decay branching ratio has a strong dependence on the split supersymmetric scale m~\widetilde{m}, which is otherwise very difficult to infer from experimental observables.Comment: 15 pages and 10 figure

    A hybrid method for determining particle masses at the Large Hadron Collider with fully identified cascade decays

    Full text link
    A new technique for improving the precision of measurements of SUSY particle masses at the LHC is introduced. The technique involves kinematic fitting of events with two fully identified decay chains. We incorporate both event ETmiss constraints and independent constraints provided by kinematic end-points in experiment invariant mass distributions of SUSY decay products. Incorporation of the event specific information maximises the information used in the fit and is shown to reduce the mass measurement uncertainites by ~30% compared to conventional fitting of experiment end-point constraints for the SPS1a benchmark model.Comment: 10 pages, 2 .eps figures, JHEP3 styl

    Cohomology Groups of Deformations of Line Bundles on Complex Tori

    Full text link
    The cohomology groups of line bundles over complex tori (or abelian varieties) are classically studied invariants of these spaces. In this article, we compute the cohomology groups of line bundles over various holomorphic, non-commutative deformations of complex tori. Our analysis interpolates between two extreme cases. The first case is a calculation of the space of (cohomological) theta functions for line bundles over constant, commutative deformations. The second case is a calculation of the cohomologies of non-commutative deformations of degree-zero line bundles.Comment: 24 pages, exposition improved, typos fixe

    Unique Identification of Lee-Wick Gauge Bosons at Linear Colliders

    Get PDF
    Grinstein, O'Connell and Wise have recently presented an extension of the Standard Model (SM), based on the ideas of Lee and Wick (LW), which demonstrates an interesting way to remove the quadratically divergent contributions to the Higgs mass induced by radiative corrections. This model predicts the existence of negative-norm copies of the usual SM fields at the TeV scale with ghost-like propagators and negative decay widths, but with otherwise SM-like couplings. In earlier work, it was demonstrated that the LW states in the gauge boson sector of these models, though easy to observe, cannot be uniquely identified as such at the LHC. In this paper, we address the issue of whether or not this problem can be resolved at an e+e−e^+e^- collider with a suitable center of mass energy range. We find that measurements of the cross section and the left-right polarization asymmetry associated with Bhabha scattering can lead to a unique identification of the neutral electroweak gauge bosons of the Lee-Wick type.Comment: 16 pages, 6 figures; discussion and references adde
    • 

    corecore