57 research outputs found

    Towards Visual Feedback Loops for Robot-Controlled Additive Manufacturing

    Full text link
    Robotic additive manufacturing methods have enabled the design and fabrication of novel forms and material systems that represent an important step forward for architectural fabrication. However, a common problem in additive manufacturing is to predict and incorporate the dynamic behavior of the material that is the result of the complex confluence of forces and material properties that occur during fabrication. While there have been some approaches towards verification systems, to date most robotic additive manufacturing processes lack verification to ensure deposition accuracy. Inaccuracies, or in some instances critical errors, can occur due to robot dynamics, material self-deflection, material coiling, or timing shifts in the case of multi-material prints. This paper addresses that gap by presenting an approach that uses vision-based sensing systems to assist robotic additive manufacturing processes. Using online image analysis techniques, occupancy maps can be created and updated during the fabrication process to document the actual position of the previously deposited material. This development is an intermediary step towards closed-loop robotic control systems that combine workspace sensing capabilities with decision-making algorithms to adjust toolpaths to correct for errors or inaccuracies if necessary. The occupancy grid map provides a complete representation of the print that can be analyzed to determine various key aspects, such as, print quality, extrusion diameter, adhesion between printed parts, and intersections within the meshes. This valuable quantitative information regarding system robustness can be used to influence the system’s future actions. This approach will help ensure consistent print quality and sound tectonics in robotic additive manufacturing processes, improving on current techniques and extending the possibilities of robotic fabrication in architecture

    Design agency:prototyping multi-agent systems in architecture

    Get PDF
    This paper presents research on the prototyping of multi-agent systems for architectural design. It proposes a design exploration methodology at the intersection of architecture, engineering, and computer science. The motivation of the work includes exploring bottom up generative methods coupled with optimizing performance criteria including for geometric complexity and objective functions for environmental, structural and fabrication parameters. The paper presents the development of a research framework and initial experiments to provide design solutions, which simultaneously satisfy complexly coupled and often contradicting objectives. The prototypical experiments and initial algorithms are described through a set of different design cases and agents within this framework; for the generation of façade panels for light control; for emergent design of shell structures; for actual construction of reciprocal frames; and for robotic fabrication. Initial results include multi-agent derived efficiencies for environmental and fabrication criteria and discussion of future steps for inclusion of human and structural factors

    Form finding of twisted interlaced structures: a hybrid approach

    Get PDF
    Our study presents a set of form-finding procedures to explore curved structures made from interlaced panels. Interlacing introduces a particular coupling between assembly components which has to be formulated along with a pertinent flexible body model. We examine here a hybrid approach: panels are simulated a first time using an elastic rod model formulated within a constrained elastic energy minimization where user can virtually buckle, twist and interlace strip assemblies. A thin shell model dynamically integrated comes complementary to the rod approach in order to resolve intersections in case of panels colliding while interlaced. Some conceptual structures are presented to demonstrated the procedure

    Gender differences in patients with dizziness and unsteadiness regarding self-perceived disability, anxiety, depression, and its associations

    Get PDF
    BACKGROUND: It is known that anxiety and depression influence the level of disability experienced by persons with vertigo, dizziness or unsteadiness. Because higher prevalence rates of disabling dizziness have been found in women and some studies reported a higher level of psychiatric distress in female patients our primary aim was to explore whether women and men with vertigo, dizziness or unsteadiness differ regarding self-perceived disability, anxiety and depression. Secondly we planned to investigate the associations between disabling dizziness and anxiety and depression. METHOD: Patients were recruited from a tertiary centre for vertigo and balance disorders. Participants rated their global disability as mild, moderate or severe. They filled out the Dizziness Handicap Inventory and the two subscales of the Hospital Anxiety Depression Scale (HADS). The HADS was analysed 1) by calculating the median values, 2) by estimating the prevalence rates of abnormal anxiety/depression based on recommended cut-off criteria. Mann-Whitney U-tests, Chi-square statistics and odds ratios (OR) were calculated to compare the observations in both genders. Significance values were adjusted with respect to multiple comparisons. RESULTS: Two-hundred and two patients (124 women) mean age (standard deviation) of 49.7 (13.5) years participated. Both genders did not differ significantly in the mean level of self-perceived disability, anxiety, depression and symptom severity. There was a tendency of a higher prevalence of abnormal anxiety and depression in men (23.7%; 28.9%) compared to women (14.5%; 15.3%). Patients with abnormal depression felt themselves 2.75 (95% CI: 1.31-5.78) times more severely disabled by dizziness and unsteadiness than patients without depression. In men the OR was 8.2 (2.35-28.4). In women chi-square statistic was not significant. The ORs (95% CI) of abnormal anxiety and severe disability were 4.2 (1.9-8.9) in the whole sample, 8.7 (2.5-30.3) in men, and not significant in women. CONCLUSIONS: In men with vertigo, dizziness or unsteadiness emotional distress and its association with self-perceived disability should not be underestimated. Longitudinal surveys with specific pre-defined co-variables of self-perceived disability, anxiety and depression are needed to clarify the influence of gender on disability, anxiety and depression in patients with vertigo, dizziness or unsteadiness

    The Lung Image Database Consortium (LIDC): An Evaluation of Radiologist Variability in the Identification of Lung Nodules on CT Scans

    Get PDF
    RATIONALE AND OBJECTIVES: The purpose of this study was to analyze the variability of experienced thoracic radiologists in the identification of lung nodules on CT scans and thereby to investigate variability in the establishment of the “truth” against which nodule-based studies are measured. MATERIALS AND METHODS: Thirty CT scans were reviewed twice by four thoracic radiologists through a two-phase image annotation process. During the initial “blinded read” phase, radiologists independently marked lesions they identified as “nodule ≄ 3mm (diameter),” “nodule < 3mm,” or “non-nodule ≄ 3mm.” During the subsequent “unblinded read” phase, the blinded read results of all radiologists were revealed to each of the four radiologists, who then independently reviewed their marks along with the anonymous marks of their colleagues; a radiologist’s own marks then could be deleted, added, or left unchanged. This approach was developed to identify, as completely as possible, all nodules in a scan without requiring forced consensus. RESULTS: After the initial blinded read phase, a total of 71 lesions received “nodule ≄ 3mm” marks from at least one radiologist; however, all four radiologists assigned such marks to only 24 (33.8%) of these lesions. Following the unblinded reads, a total of 59 lesions were marked as “nodule ≄ 3 mm” by at least one radiologist. 27 (45.8%) of these lesions received such marks from all four radiologists, 3 (5.1%) were identified as such by three radiologists, 12 (20.3%) were identified by two radiologists, and 17 (28.8%) were identified by only a single radiologist. CONCLUSION: The two-phase image annotation process yields improved agreement among radiologists in the interpretation of nodules ≄ 3mm. Nevertheless, substantial variabilty remains across radiologists in the task of lung nodule identification

    Evaluation of lung MDCT nodule annotation across radiologists and methods

    Get PDF
    RATIONALE AND OBJECTIVES: Integral to the mission of the National Institutes of Health–sponsored Lung Imaging Database Consortium is the accurate definition of the spatial location of pulmonary nodules. Because the majority of small lung nodules are not resected, a reference standard from histopathology is generally unavailable. Thus assessing the source of variability in defining the spatial location of lung nodules by expert radiologists using different software tools as an alternative form of truth is necessary. MATERIALS AND METHODS: The relative differences in performance of six radiologists each applying three annotation methods to the task of defining the spatial extent of 23 different lung nodules were evaluated. The variability of radiologists’ spatial definitions for a nodule was measured using both volumes and probability maps (p-map). Results were analyzed using a linear mixed-effects model that included nested random effects. RESULTS: Across the combination of all nodules, volume and p-map model parameters were found to be significant at P < .05 for all methods, all radiologists, and all second-order interactions except one. The radiologist and methods variables accounted for 15% and 3.5% of the total p-map variance, respectively, and 40.4% and 31.1% of the total volume variance, respectively. CONCLUSION: Radiologists represent the major source of variance as compared with drawing tools independent of drawing metric used. Although the random noise component is larger for the p-map analysis than for volume estimation, the p-map analysis appears to have more power to detect differences in radiologist-method combinations. The standard deviation of the volume measurement task appears to be proportional to nodule volume

    ShapeOp—A robust and extensible geometric modelling paradigm

    No full text

    Temporal bone anatomy characteristics in superior semicircular canal dehiscence

    No full text
    Introduction: Superior semicircular canal dehiscence (SCD) remains difficult to diagnose despite advances in high-resolution computed tomography (HRCT) imaging. We hypothesize possible associations between gross temporal bone anatomy and sub-millimeter pathology of the semicircular canals, which may supplement imaging and clinical suspicion. This pilot study investigates differences in gross temporal bone anatomic parameters between temporal bones with and without SCD. Methods: Records were reviewed for 18 patients referred to an otology clinic complaining of dizziness with normal caloric stimulation results indicative of non-vestibular findings. Eleven patients had normal temporal bone anatomy while seven had SCD. Three-dimensional reconstruction of every patient's temporal bone anatomy was created from patient-specific computational tomography images. Surface area (SA), volume (V), and SA to V ratios (SA:V) were computed across temporal bone anatomical parameters. Results: SCD temporal bones have significantly smaller V, and larger temporal bone SA. Mean (±SD) V was 21,484 ± 3,921 mm3 in temporal bones without SCD and 16,343 ± 34,471 mm3 for those with SCD. Their respective SA were 13,733 ± 1,603 mm2 and 18,073 ± 3,002 mm2. Temporal bone airspaces and lateral semicircular canals did not demonstrate significant differences where SCD was and was not present. Plots of MVwarm response against computed SCD temporal bone anatomic parameters (SA, V and SA:V) showed moderate to strong correlations: temporal bone SA:V (r = 0.64), temporal bone airspace V (r = 0.60), temporal bone airspace SA (r = 0.55), LSCC SA (r = 0.51), and LSCC-to-TM Distance (r = 0.65). Conclusions: This analysis demonstrated that SCD is associated with decreased temporal bone volume and density. The defect in SCD does not appear to influence caloric responses
    • 

    corecore