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Abstract. Our study presents a set of form-finding procedures to explore curved
structures made from interlaced panels. Interlacing introduces a particular cou-
pling between assembly components which has to be formulated along with a perti-
nent flexible body model. We examine here a hybrid approach: panels are simulated
a first time using an elastic rod model formulated within a constrained elastic energy
minimization where user can virtually buckle, twist and interlace strip assemblies. A
thin shell model dynamically integrated comes complementary to the rod approach
in order to resolve intersections in case of panels colliding while interlaced. Some
conceptual structures are presented to demonstrated the procedure.

1 Introduction

Interlacing can be regarded as a unifying process to create an assembly from indi-
vidual components: e.g. knitting a tissue from yarns, weaving a basket from wood
strips. Interlacing, regardless of scale, inherits some elegant structural notions to
be brought beyond the wickerwork scale. It lets assemble flexible slender compo-
nents into a resistant object, with far more load bearing capacity. It lets span over
a distance times more than the cross section dimension of its components. Com-
plex coupling introduced by interlacing also distributes forces over the assembly
components to ensure a more homogeneous load take down. While interlacing with
tensile elements is more matter of pattern complexity, some key differences impose
when assembling flexible components with bending resistance and anisotropic cross
section. They are flexible enough to undergo large elastic deformations but would



(a) Wickerwork house, Nagano, Japan, 2002, Shigeru (b) Facade of the Pabellén de Aragén, Expo
Ban architects 2008, Zaragoza, Spain

Figure 1: Interlacing: structural versus visual influence

not allow any arbitrary pattern unlike textiles: panels would fail in tight closure or
high curvature patterns. Bending and twisting forces influence how the interlaced
relaxed geometry would look like. The fundamental interest of reproducing a pat-
tern with components resistant in bending and torsion (unlike tensile-only ones) is
that the assembly will relax into an actively curved geometry which can span over an
architectural ambiance. Curved spanning (versus being a tissue) is the key to a struc-
tural regard toward interlaced assemblies rather than a facade motif or an ornament.
(see Fig.1) This forward implies that the geometry for an actively curved interlace
of components with bending and torsional resistance has to be form-found. This
form-finding problem with all implied complexities is explored in this manuscript.
We have to adopt a nonlinear structural model to simulate panels with bending and
twist degrees of freedom, have to come up with a formulation to impose an inter-
lacing pattern as coupling constraints and perform collision detection/handling if
required. In terms of technical details, the Euler Elastica [Love 2013] (see Fig. 2) is
the building block of the specific family of structures highlighted in our study. We
use an extended energy functional to take into account also for twist contributions
and append three further structural design potentials on top of a simple Elastica: we
explore twisted Elastica made from flexible panels and couple these individual Elas-
ticas with proximity and/or alignment constraints coming from our desired interlace
design pattern. We also deal with collision resolving using a pseudo-dynamic shell
solver in case interlace and twist boundary condition cause panel intersection.

The manuscript is organized in following order: the related work is briefly re-



Figure 2: Elastica variants with and without end twist for timber panel 0.24m x 0.015m
spanning over 6m: (a) twist applied on single end vertex (b) symmetric twist applied on both
end vertices (c) the zero twist Elastica solutions for various total lengths from 6.5m up to 16m

viewed spanning over form-active structures, physics-based rod and shell models.
Our hybrid form-finding approach is then detailed, rod-wise and shell-wise and is
put in practice for some case-study concept structures to demonstrate the design
potential of the procedure.

1.1 Related work

Interlaced/form-active structures still most of applications for form-active struc-
tures made from timber panels come from research institutes, hereby four among
the recent pavilions are cited: the wood pavilion of Oslo School of Architecture and
Design is a modular structural web, made out of thin pine veneer naturally curved
and post-tensioned by material’s hygroscopic effect [Hensel 2013]. (Fig. 3(a))
ICD/ITKE research pavilion [Fleischmann and Menges 2012] (Fig. 3(b)) highlights
an overall interlaced geometry using actively-bent timber panels connected by clip
dovetail joints and clamped at both ends. The “Radical Wood Pavilion” of Design +
Analysis research group of Aalto University [Niiranen 2013] is a form-active, inter-
laced structure, highlighting a twisted module. (Fig. 3(c)) Timber Fabric structures
of IBOIS-EPFL, Switzerland [Hudert 2012] is about interpretation of knotted and
braided patterns using flexible timber panels as strands. Panels are elastically bent
and twisted into a curved arch structure (Fig. 3(d)) where the geometry comes from
the assembly logic.

Elastic rods Elastic rods have been topic of intense ongoing research. Covered
subjects go from computational mechanics [Dias and Audoly 2014], DNA super-



Figure 3: Interlaced form-active structures made form flexible panels: (a) The wood Pavilion
of Oslo School of Architecture and Design, (b) ICD/ITKE research pavilion 2010, (c) The
”Radical Wood Pavilion” (d) Timber Fabric Structures: photo () Markus Hudert

coiling Simulation [Olson et al. 2013] and robotics [Lock et al. 2010] up to the
physically based computer animation and virtual surgery simulators. [Chentanez
et al. 2009; Miller et al. 2014]

Thin shell physics-based models Thin shell deformable modeling has been inten-
sively researched through diverse disciplines. Mass spring systems [Choi and Ko
2005] have been among most trivial approaches for physically simulation of cloth
and deformable skins while [Bridson et al. 2003; Grinspun et al. 2003] propose a
dihedral angle difference as a measure to define the thin shell out of plane behavior.
An alternative approach based on discrete isometric bending model is also presented
in [Bergou et al. 2006]. Most recently Iso Geometric analysis has also been applied
to simulate cloth deformation. [Lu and Zheng 2014]

1.2 Goals and Contributions

Our main motivation through this study is thus to formulate a physics-based tool for
interlaced configurations to enable an interactive design experience.



Rich rod and shell models for structural architecture applications: we offer im-
plementations of two efficient physics-based models from the computer graphics
body of knowledge [Bergou et al. 2008; Grinspun et al. 2003] to use for architec-
tural geometry applications. The fact of using these models bring some key fea-
tures into the existing particle-based form-finding tools such as [Piker 2013]: (i)
the possibility to deal with general rod and shell cross sections with usual elastic
stiffness terms, instead of simplified spring stiffness. Spring values usually need in-
terpretation, depends on the spatial discretization and require special care to create
out-of-plane resistance for shell simulations (i) enhancing twist degrees of freedom
for rod deformation (iii) an improved out-of-plane bending behavior for thin shell
physically based simulation.

Constraint formulation of an interlaced design pattern: we give elements on how
to interpret a desired interlacing pattern as equality constraints for a nonlinear op-
timization problem. Our formulation integrates also some useful architectural local
connection features such as imposing a desired offset distance or the possibility to
impose the alignment of panels at the overlap.

Discrete Elastic rod model employed in a static framework: we reformulate the
initially proposed dynamically integrated rod model of [Bergou et al. 2008] into an
offline constrained optimization problem with displacements and twists as variables
of the optimization problem defined all at once.

2 twisted interlaced structure simulation pipeline

The complexity of interlaced configuration form-finding can be reduced by breaking
it down into pertinent sub-problems based on the flexible body model used to repre-
sent panels and the physical phenomenon to simulate. Buckling is the key curving
agent in these form-active structures and supposing a static framework, it can be
readily formulated as a constrained elastic energy minimization with the only con-
straints as total panel length and span. A flexible rod model with vertex positions
and cross section orientation of edge segments as variables, can be efficiently used
to get elastic energy expressions. Having end vertices twisted and panels which have
to pass underneath or above of another panel of the assembly at a particular position
(interlacing) are simply additional constraints on either rod vertices or cross section
orientation angles (twists), which have to be injected to the initial elastic energy min-
imization problem of buckling. The notion of above and below have to be discussed
(is it with respect to global vertical axis or the local one?) as well as the clearance
at overlap nodes, the minimum required offset. Up to here if the minimum elastic
energy geometry does not contain colliding panels, all of above mentioned can be
solved using constrained optimization formulated with a rod kinematics. Collision
detection/resolving in its turn seems to us easier to handle with a shell kinematics in
a dynamic simulation, which motivates our hybrid approach. This brief go-through
also provides indications on the inputs to be specified for each problem, the design
parameters. For each panel, the initial length and target span, the imposed end twist



and material properties have to be specified by user. At each overlapped node the
offset distance to respect, is also an input data. These design parameters are sym-
bolically represented on Fig. 4 at problem definition level. While investigating an
interlaced configuration, it is also convenient to represent and discuss the pattern in
a connectivity graph. The interlaced diagram is introduced for this purpose. Since
the location of overlap node is also a degree of freedom for our problem, user has
also to specify where (on which rod vertices) he would like to create the overlap
coupling and his desired element order at this particular overlap.

We elaborate the rest of this section as follows: the interlaced diagram is first in-
troduced and technical details for the elastic rod model used to simulate the twisted
Elasticas and for the thin-shell model used for intersection resolving are presented
briefly afterward. We show how to configure the optimization problems to solve
for the classical planar Elastica (without end twists), for the twisted one and for the
coupled system of twisted Elasticas with overlap order constraints. The thin-shell
model is presented next, followed by our intersection resolving implementation.

2.1 Interlaced diagram

A graph representation inspired form projected knot diagrams is introduced in order
to define and distinguish interlaced morphologies. Lines numbered at both ends
represent panels and for intermediate interlace nodes, the relative overlap order of
panels is noted using the > notation. The graph representation enables to effectively
sweep over interlaced configurations in an abstract topological form regardless of
the dual 3D shape while there might be several of those duals corresponding to the
same graph depending on panel’s initial lengths and span, their elastic properties,
precise location of overlaps and also the crossing’s linking number.

2.2 Static simulation with elastic Kirchhoff rod model

We assume the panel(s) to be represented by their centerline curve, have a cross
section of w x ¢, a flat initial state (zero initial curvature, zero initial twist) of length
linit and initial orientation defined by vector ng. Our goal is to solve the buckled
twisted state of the panel when it spans over /g, and end twists of 6°, 0" are applied
on its end vertices, giving the new cross section orientation of end vertices as nj
and np. (see Fig. 4 top) We consider the energy functional for elastic Kirchhoff
rod proposed by [Bergou et al. 2008] and reproduced in Eq. 1 for a rod with n
linear edge segments. Basically the smooth centerline curve of the rod is divided
into a polyline with linear edge segments. We follow the same notation for scalar
and vector quantities as [Bergou et al. 2008]. in Eq. 1, over-lined terms correspond
to the quantities at their reference state, ! measures the contribution of bi-normal
curvature vector of vertex i on edge segment j and my takes the relative twist of
vertex k into account. We refer interested readers to [Bergou et al. 2008] for further
details on the curve-angle model. The following stiffness constants are used for
rectangular cross section of panel w X ¢ with usual notation for elastic constants: the
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bending stiffness B = (Etwo/lz EW;’ /12) and the torsional stiffness f§ = G’T” where
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Figure 4: Twisted interlaced structure form-finding pipeline
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The above mentioned energies remains the same for a general cross section, only
the stiffness terms are required to be updated. [Bergou et al. 2008] also gives sim-
plified expressions for a rod with an isotropic cross section and deformed from a flat
initial state. The original method in [Bergou et al. 2008] is a dynamic simulation and
at each time step, before integrating for positions, a quasi-static framework for twist
angles has to be satisfied. The inextensibility of edge segments and is particularly



imposed using the manifold projection method. [Hairer et al. 2006] While the pro-
posed curve-angle kinematic fits well to our problematics, we only require the final
relaxed deformed state and thus decide to proceed instead with a static framework
for all degrees of freedom and propose to reformulate it as a constrained optimiza-
tion problem. The coupled system of twisted Elastica is supposed to have of a given
number of rods, with ith panel noted as '), Instead of imposing all constraints at
once to the flat initial state to get the buckled - twisted - interlaced configuration,
we instead proceed with a three stage solution procedure formulated as constrained
optimization problems detailed bellow.

1. System of planar Elasticas of imposed total length and span The initial opti-
mization is to solve the Elastica problem with zero twist contribution, which turns

)

out to be the classical bi-hinged Elastica curve. Panel”) with initial length of llmt

buckles to span lt(a)r, with nl) equal edges, fixed end vertices and under an additional
constraint to keep the deformed configuration in the initial vertical plane. Variables
to solve for are unfixed vertex positions (vector quantity x) and edge segment twist
angle (scalar quantity 0). The initial state for this first stage is the flat panel state.

(zero initial curvature, zero initial twist)
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II. System of twisted Elasticas: as the next step we solve for the twisted Elasticas
with both end edges supposed to be clamped. The initial state for this analysis are
deformed Elastica retrieved by solving problem I described above. The cross section
orientation at both ends for each panel are obtained by rotating the corresponding
initial normal vector n(()l) respectively by 80 and 67(0),

T" count
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respectively (7)), (Gn(i)fl )Daligned w.r.t n(li) and n(zi)

III. Interlacing twisted Elasticas: The final simulation step is dedicated to couple
twisted panels according to the schematic interlace pattern. The initial state for this



analysis is the result of problem II. For each overlap panel(i) > panel<k), a handle

reference point have to be defined by the user to determine where exactly the overlap

has to be passed. The vertices of the panels involved in the overlap (the ones closest
(¥ (k)

to this handle point), noted as x j and x;”’, will be the ones to hold the constraints.

The distance between corresponding nodes of the overlapping panels,
set to be equal to the given offset distance d and the top/bottom in the overlap is im-
posed using the projected distance of the involved nodes with respect to the material
frame vector mg) of the panel®). (The out of plane direction of the panel supposed
to pass on top of the other one) The former axis gives a local order depending on
panel orientation. The global z axis should be used instead of (mé)(i) for a vertically
oriented overlap.
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iii) Twist angle of material frames for first and last edges of panel(i>
respectively (%)), (6"(0_l )@ aligned w.r.t n(li) and n(zi)

iv) foreach <x§.i) > xl(k> order constraint)

T
<X5»i) —xl(k)) . (mé)(i) —-d=0
end foreach

The above cited problems are solved using a Quasi-Newton procedure with
BFGS approximation of the Hessians using a primal-dual interior-point algorithm
with a filter line-search method [Wéchter and Biegler 2006; HSL]. Notice that only
energy gradients with respect to the vertex positions and twist angles are required.
(and not the Hessians, see [Bergou et al. 2008] for forces)

2.3 Pseudo-dynamic simulation with elastic shell model

In some interlaced configurations with repeatedly inversed overlaps (like overlaps
in a braid {1 >2,2>1, 1 >2...}) or when the overlap offset distance is small
with respect to the panel width, the minimum energy configuration obtained from
the coupled Elastica optimization will not be intersection free. We propose to dy-
namically integrate an elastic shell model of the discretized mid-surface of panels
for intersection detection and resolving. Among existing physically based thin shell
model we use [Grinspun et al. 2003] for triangle meshes with flexural and mem-
brane energy functionals in their discrete form. The flexural energy comes form a
discrete analogy of the integral mean curvature of the surface mesh and is measured
as a function of the difference between complements of the dihedral angle of mesh
edges on deformed and reference state, the former quantities are marked with an
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Figure 5: Discrete elastic shell setting and energies, contributions acting on vertex v: (a) The
area (mass) related to vertex (b) Flexural energy contributions of indirect dihedrals around
vertex (c) membrane energy contributions of direct dihedrals around vertex (d) in plane shear
energy contributions of faces connected to vertex

over line. Principals of discrete elastic shell settings and energies are briefly re-
minded in Fig. 5. Around a given vertex v we identify a set of direct dihedrals and
corresponding edges noted as e, (V) contributing to membrane forces (in plane ten-
sion or compression) and a set of indirect dihedrals and corresponding edges, noted
as ¢;(v) which apply the flexural forces according to the stiff hinge effect around
the corresponding edge e;. The term ﬁg, is the one third of the sum of the height
of the two triangles sharing the edge ¢;(v) at the reference configuration. See also
the index of [Grinspun et al. 2003] for another possible definition for /,,. We ap-
ply corresponding values of kz,k4,kp and derivate these energies to get the forces
acting on vertices through vector calculus manipulation which we do not reproduce
here for conciseness. ([Grinspun et al. 2003] also proposes automatic derivation)
the Newmark integration scheme is used for position update with y= 0.5, = 0.25
with the predictor-corrector approach. [Hughes et al. 1979] Mesh intersection de-
tection is performed using the fast triangle-triangle intersection test [Moller 1997]
and resolved by applying the corrective penalty forces in direction which minimizes
the intersection line as detailed in [Volino and Magnenat-Thalmann 2006]. This
method is particularly adopted to our problematic because it does not necessarily



Figure 6: A gridshell structure with twisted panels: (a) The graph representation (b) the
solution to Elastica problem (c) Twisted Elastica configuration (d) Interlaced configuration

require the mesh intersection to be a closed contour (unlike [Baraff et al. 2003]) and
moreover, it is history-free.

3 Case studies

Four case studies are discussed in this section to demonstrate our form-finding pro-
cedure: a gridshell like structure built with twisted panels, a trefoil arch, a pentafoil
roof and a twisted truss-beam module. In all these examples panels are supposed
to be made from timber and mean elastic properties of wood E = 8000 Mpa,v =
0.3,p = 500 kg/m? are used.

3.1 A gridshell structure with panels

We provide an example of a gridshell type structure (see Fig.6) this time built with
panels instead of regular circular cross-section beams and we additionally impose
a uniform twist of 90° on start vertex of all panels. The beams are all 10m long
buckled to span various lengths: 6.25m < I < 8.46m. The offset distance is 0.2m
and alignment of panels is imposed at overlaps. Panels are all 0.24m x 0.015m. The
structure is at most 3.2m high at the level of entrance.

3.2 An interlaced trefoil

The concept structure illustrated in Fig.7 is an example of interlacing which requires
an intersection handling step. The trefoil arch structure is supposed to be made with
timber panels 0.24m x 0.015m, all panels are 14m long spanning over 8.5m and
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(a)

Figure 7: A trefoil interlaced arch: (a) The graph representation (b) the solution to Elastica
problem (c) Twisted Elastica configuration with overlapping vertices highlighted (d) Inter-
laced configuration (contains intersection) (e) Intersections handled

respective twist of (—15°,—30°) is applied on start and end vertices of each panel.
The arch becomes 4.8m high at middle-vertex at its intersection-free relaxed state.

3.3 Aninterlaced pentafoil

The concept structure illustrated in Fig.8 is a complex structure with multiple over-
lap nodes and colliding components. The pentafoil roof structure is supposed to
be made with timber panels 0.65m x 0.03m, all 14m long spanning over 11.8m
with support points equally spaced on a circle of 6.3m radius. Respective twist
of (34°,34°) is applied on start and end vertices of each panel. As a result of inter-
lacing the arch lifts up to clear 1.98m vertically with respect to the support point at
its intersection-free relaxed state.

3.4 Twisted truss module

Fig. 9 demonstrates an example where the coupling constraint is only a proximity
one and no alignment is imposed. Exterior beams are 6.8m long and interior ones
6.3m and the span is 6m. The width of the beam (axis to axis between exterior



Figure 8: A pentafoil interlaced roof: (a) the graph representation (b) flat initial state (c)
solution to the Twisted Elastica problem with overlapping vertices highlighted to be interlaced
at next step (d) interlaced configuration (contains intersection) (e) intersections handled

beams) is 0.7m, the middle proximity constraint is set also to 0.7m and the two top
proximity constraints are 0.4m. (constrained vertices are highlighted in Fig. 9.c) All
panels are all 0.2m x 0.01m. In concept structure Fig 9.d, the rebars are positioned
to represent the imposed proximity while solving the constrained system and make
the entire module behave as an active prestressed truss beam.

4 Conclusion and outlook

We borrowed two elegant models and techniques employed for physically based
simulation of flexible bodies from computer graphics to use in structural form-
finding and combined them as a simulation pipeline with a particular focus to ex-



Figure 9: A twisted truss beam active module: (a) The solution for Elastica problem (b)
twisted non-coupled beams (c) coupled system of twisted Elasticas with constrained vertices
highlighted (d) a concept structure with connectors maintaining the enforced constraints

plore interlaced structures and modules and twisted configurations currently out of
reach of non-engineers. The framework is subdivided into optimization subprob-
lems to handle the Elastica problem in its zero-twist and twisted form and also in
case of coupled system of panels with or without overlap constraints. Intersecting
panels are cleared using a pseudo-dynamic shell model and an intersection contour
minimization algorithm. Both rod and shell frameworks have been implemented as
Grasshopper plug-ins and are concerted as described to run presented case studies.
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