45 research outputs found

    Structure of chalcogenide glasses by neutron diffraction

    Get PDF
    5 pages. Proceedings International Workshop Non-crystalline Solids, Gijon (Spain).International audienceThe purpose of this work is to study the change in the structure of the Ge-Se network upon doping with Ag. The total structure factor S(Q) for two samples has been measured by neutron diffraction using the two-axis diffractometer dedicated to structural studies of amorphous materials, D4, at the Institut Laue Langevin. We have derived the corresponding radial distribution functions for each sample and each temperature, which gives us an insight about the composition and temperature dependence of the correlation distances and coordination numbers in the short-range. Our results are compatible with the presence of both GeSe4/2 tetrahedra and Se-Se bonds. The Ag atoms are linked to Se in a triangular environment. Numerical simulations allowing the identification of the main peaks in the total pair correlation functions have complemented the neutron diffraction measurements

    Raman spectroscopy of GeSe and AgGeSe thin films

    Get PDF
    The structural properties of Agy(Ge0.25Se0.75)1-y thin films (y=0, 0.07, 0.10, 0.15, 0.20 and 0.25 at. fraction) were studied. The films were prepared by pulsed laser deposition using bulk glass targets of the studied ternary system and deposited onto microscope slides. Their amorphous structures were confirmed by XRD (X-ray Diffraction). The effect of silver content on films structures was analysed by Raman spectroscopy. Typical Raman vibration modes were observed in the Ge0.25Se0.75 binary film: Ge-Se corner-sharing tetrahedra mode (CS) at 199 cm-1, edge sharing tetrahedra mode (ES) at 217 cm-1, and SeSe rings and chains mode at 255-265 cm-1 (CM). In the Agy(Ge0.25Se0.75)1-y ternary thin films, the same modes were observed but with a red shift and an intensity reduction in the ES and CM bands.Fil: Conde Garrido, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernåndez Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería ; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Fisica. Laboratorio de Sólidos Amorfos; ArgentinaFil: Piarristeguy, A.. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Fisica. Laboratorio de Sólidos Amorfos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernåndez Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería ; ArgentinaFil: Le Parc, R.. Centre National de la Recherche Scientifique; Francia. Universite Montpellier II; FranciaFil: Ureña, Maria Andrea.Fil: Fontana, Marcelo.Fil: Arcondo, B..Fil: Pradel, A.. Universite Montpellier Ii; Franci

    Utilisation des microscopies en champ proche pour la caractérisation électrique de verres hétérogÚnes

    No full text
    Les systĂšmes Ge(As)-Se(S) prĂ©sentent un large domaine de vitrification favorable Ă  l’étude d’un grand nombre de propriĂ©tĂ©s et de leurs corrĂ©lations avec la structure et/ou la composition. En particulier, les propriĂ©tĂ©s Ă©lectriques des verres sont fortement modifiĂ©es par l’addition de mĂ©taux alcalins ou argent (Li+, Na+, Ag+). Les Ă©tudes combinĂ©es de la conduction Ă©lectrique par spectroscopie d’impĂ©dance complexe (CIS) et de la microstructure par microscopie Ă  force Ă©lectrique (EFM) nous ont permis de caractĂ©riser les hĂ©tĂ©rogĂ©nĂ©itĂ©s Ă©lectriques qui existent dans de nombreux verres chalcogĂ©nures contenant de l’argent. Si les verres (Ag2S)x(GeS)60(GeS2)40-x sont homogĂšnes, les verres sulfures (Ag2S)x(GeS2)100-x et (Ag2S)x(As2S3)100-x ainsi que les verres sĂ©lĂ©niures Agx(Ge0,25Se0,75)100-x prĂ©sentent des hĂ©tĂ©rogĂ©nĂ©itĂ©s. De telles hĂ©tĂ©rogĂ©nĂ©itĂ©s sont la signature Ă©lectrique d’une dĂ©mixtion. La sĂ©paration de phases et le seuil de percolation qui en dĂ©coule permettent d’expliquer l’énorme saut de conductivitĂ© (~6–8 ordres de grandeur) Ă©lectrique observĂ© dans ces matĂ©riaux. La caractĂ©risation Ă©lectrique de chacune des micro(nano)phases prĂ©sentes dans le verre Agx(Ge0,25Se0,75)100-x a Ă©tĂ© rĂ©alisĂ©e en combinant deux techniques de microscopie en champ proche : la microscopie Ă  force Ă©lectrique – electric force microscopy (EFM) et la microscopie Ă  force atomique conductrice – conducting atomic force microscopy (C-AFM). La permittivitĂ© relative des deux phases change avec la teneur en argent. De plus, la sensibilitĂ© de la technique C-AFM permet de mettre en Ă©vidence, avec l’augmentation de la teneur en argent, une augmentation du courant de quelques pico-ampĂšres dans la phase riche en argent. Ce rĂ©sultat montre que l’augmentation de conductivitĂ© des verres Ag-Ge-Se dans la rĂ©gion de forte conductivitĂ© (x > 8−10 %at.) rĂ©sulte d’une augmentation de la conductivitĂ© de la phase riche en argent et non d’une augmentation de la quantitĂ© de cette phase qui aurait une composition et une conductivitĂ© constantes

    Homogeneous–inhomogeneous models of Agx(Ge0.25Se0.75)100−x bulk glasses

    No full text
    International audienc

    Towards accurate models for amorphous GeTe: Crucial effect of dispersive van der Waals corrections on the structural properties involved in the phase-change mechanism

    No full text
    International audienceThe effect of van der Waals dispersion correction in combination with density functional theory is investigated on a canonical amorphous phase-change material. Density functional theory (DFT), using the generalized gradient approximation, usually fails to reproduce the structure of amorphous tellurides, which manifests by an overestimation of the interatomic bond distances, and particularly the Ge-Te one involved in local geometries (tetrahedral or defect octahedral). Here, we take into account dispersion forces in a semiempirical way and apply such DFT simulations to amorphous GeTe. We obtain a substantial improvement of the simulated structure factor and pair-correlation function, which now reproduce the experimental counterparts with an unprecedented accuracy, including on a recent partial contribution from anomalous x-ray scattering and from x-ray absorption. A detailed analysis of the corresponding structures indicates that the dispersion correction reduces the Ge-Te bond length, increases the fraction of tetrahedral germanium, and reduces the presence of heteropolar so-called fourfold ABAB rings. Given that these structural features have been stressed to be central for the understanding of the phase-change mechanism, the present results challenge our current understanding of the crystal to amorphous transformation at play

    Microstructure of Ag2S–As2S3 glasses

    No full text
    International audienc
    corecore