335 research outputs found

    On contact numbers in random rod packings

    Get PDF
    Random packings of non-spherical granular particles are simulated by combining mechanical contraction and molecular dynamics, to determine contact numbers as a function of density. Particle shapes are varied from spheres to thin rods. The observed contact numbers (and packing densities) agree well with experiments on granular packings. Contact numbers are also compared to caging numbers calculated for sphero-cylinders with arbitrary aspect-ratio. The caging number for rods arrested by uncorrelated point contacts asymptotes towards <γ> = 9 at high aspect ratio, strikingly close to the experimental contact number <C> ≈ 9.8 for thin rods. These and other findings confirm that thin-rod packings are dominated by local arrest in the form of truly random neighbor cages. The ideal packing law derived for random rod–rod contacts, supplemented with a calculation for the average contact number, explains both absolute value and aspect-ratio dependence of the packing density of randomly oriented thin rods

    Concentration Dependen Sedimentation of Collidal Rods

    Full text link
    In the first part of this paper, an approximate theory is developed for the leading order concentration dependence of the sedimentation coefficient for rod-like colloids/polymers/macromolecules. To first order in volume fraction ϕ\phi of rods, the sedimentation coefficient is written as 1+αϕ1+\alpha \phi. For large aspect ratio L/D (L is the rod length, D it's thickness) α\alpha is found to very like (LD)2/log(LD)\propto (\frac{L}{D})^2/\log (\frac{L}{D}). This theoretical prediction is compared to experimental results. In the second part, experiments on {\it fd}-virus are described, both in the isotropic and nematic phase. First order in concentration results for this very long and thin (semi-flexible) rod are in agreement with the above theoretical prediction. Sedimentation profiles for the nematic phase show two sedimentation fronts. This result indicates that the nematic phase becomes unstable with the respect to isotropic phase during sedimentation.Comment: Submitted to J. Chem. Phys. See related webpage http://www.elsie.brandeis.ed

    Two-dimensional Packing in Prolate Granular Materials

    Full text link
    We investigate the two-dimensional packing of extremely prolate (aspect ratio α=L/D>10\alpha=L/D>10) granular materials, comparing experiments with Monte-Carlo simulations. The average packing fraction of particles with aspect ratio α=12\alpha=12 is 0.68±0.030.68\pm0.03. We quantify the orientational correlation of particles and find a correlation length of two particle lengths. The functional form of the decay of orientational correlation is the same in both experiments and simulations spanning three orders of magnitude in aspect ratio. This function decays over a distance of two particle lengths. It is possible to identify voids in the pile with sizes ranging over two orders of magnitude. The experimental void distribution function is a power law with exponent β=2.43±0.08-\beta=-2.43\pm0.08. Void distributions in simulated piles do not decay as a power law, but do show a broad tail. We extend the simulation to investigate the scaling at very large aspect ratios. A geometric argument predicts the pile number density to scale as α2\alpha^{-2}. Simulations do indeed scale this way, but particle alignment complicates the picture, and the actual number densities are quite a bit larger than predicted.Comment: 6 pages + 10 ps/eps figure

    Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps

    Full text link
    A density functional theory for colloidal dynamics is presented which includes hydrodynamic interactions between the colloidal particles. The theory is applied to the dynamics of colloidal particles in an optical trap which switches periodically in time from a stable to unstable confining potential. In the absence of hydrodynamic interactions, the resulting density breathing mode, exhibits huge oscillations in the trap center which are almost completely damped by hydrodynamic interactions. The predicted dynamical density fields are in good agreement with Brownian dynamics computer simulations

    A Case Study of Sedimentation of Charged Colloids: The Primitive Model and the Effective One-Component Approach

    Full text link
    Sedimentation-diffusion equilibrium density profiles of suspensions of charge-stabilized colloids are calculated theoretically and by Monte Carlo simulation, both for a one-component model of colloidal particles interacting through pairwise screened-Coulomb repulsions and for a three-component model of colloids, cations, and anions with unscreened-Coulomb interactions. We focus on a state point for which experimental measurements are available [C.P. Royall et al., J. Phys.: Cond. Matt. {\bf 17}, 2315 (2005)]. Despite the apparently different picture that emerges from the one- and three-component model (repelling colloids pushing each other to high altitude in the former, versus a self-generated electric field that pushes the colloids up in the latter), we find similar colloidal density profiles for both models from theory as well as simulation, thereby suggesting that these pictures represent different view points of the same phenomenon. The sedimentation profiles obtained from an effective one-component model by MC simulations and theory, together with MC simulations of the multi-component primitive model are consistent among themselves, but differ quantitatively from the results of a theoretical multi-component description at the Poisson-Boltzmann level. We find that for small and moderate colloid charge the Poisson-Boltzmann theory gives profiles in excellent agreement with the effective one-component theory if a smaller effective charge is used. We attribute this discrepancy to the poor treatment of correlations in the Poisson-Boltzmann theory.Comment: 9 pages, 7 figure

    Depletion-Induced Chiral Chain Formation of Magnetic Spheres

    Get PDF
    Experimental evidence is presented for the spontaneous formation of chiral configurations in bulk dispersions of magnetized colloids that interact by a combination of anisotropic dipolar interactions and isotropic depletion attractions. The colloids are superparamagnetic silica spheres, magnetized and aligned by a carefully tuned uniform external magnetic field; isotropic attractions are induced by using poly(ethylene oxide) polymers as depleting agents. At specific polymer concentrations, sphere chains wind around each other to form helical structures–of the type that previously have only been observed in simulations on small sets of unconfined dipolar spheres with additional isotropic interactions

    Self-assembly of charged colloidal cubes

    Get PDF
    In this work, we show how and why the interactions between charged cubic colloids range from radially isotropic to strongly directionally anisotropic, depending on tuneable factors. Using molecular dynamics simulations, we illustrate the effects of typical solvents to complement experimental investigations of cube assembly. We find that in low-salinity water solutions, where cube self-assembly is observed, the colloidal shape anisotropy leads to the strongest attraction along the corner-to-corner line, followed by edge-to-edge, with a face-to-face configuration of the cubes only becoming energetically favorable after the colloids have collapsed into the van der Waals attraction minimum. Analysing the potential of mean force between colloids with varied cubicity, we identify the origin of the asymmetric microstructures seen in experiment. This journal is © The Royal Society of Chemistry.Austrian Science Fund, FWF: START-Projekt Y 627-N27Russian Science Foundation, RSF: 19-12-00209We thank Prof. A. Ivanov for helpful discussions. F. D. wants to acknowledge Dr Leon Bremer and Dr Harm Langermans for their help with the Langmuir–Blodgett experiments. This research has been supported by the Russian Science Foundation Grant No. 19-12-00209. The authors acknowledge support from the Austrian Research Fund (FWF), START-Projekt Y 627-N27. Computer simulations were performed using the Vienna Scientific Cluster (VSC-3 and VSC-4)

    Depletion forces in non-equilibrium

    Full text link
    The concept of effective depletion forces between two fixed big colloidal particles in a bath of small particles is generalized to a non-equilibrium situation where the bath of small Brownian particles is flowing around the big particles with a prescribed velocity. In striking contrast to the equilibrium case, the non-equilibrium forces violate Newton's third law, are non-conservative and strongly anisotropic, featuring both strong attractive and repulsive domains.Comment: 4 pages, 3 figure

    Етнополітична партія як специфічний суб’єкт міжетнічних взаємин

    Get PDF
    Характер міжетнічних відносин зумовлений нерівністю прав і можливостей людей, які належать до різних етнічних спільнот, унаслідок чого між ними виникають конфлікти. У процесі їх врегулювання важлива роль покладається на політичні інститути (державу, партії, міжнародні організації), що мають гарантувати рівну участь етнічних суб’єктів у всіх сферах життєдіяльності соціуму. У статті зосереджено увагу на феномені етнополітичної партії, яка покликана забезпечувати політичне представництво конкретного народу-етносу в органах влади.The character of interethnic relationships is stipulated by inequality of rights and abilities of people that belong to different ethnic communities, which results in conflicts. Political institutions (the state, political parties, international organizations) are to play significant role in their settlement. They have to assure equal participation of ethnical entities in all areas of social life. In the article we focus on such phenomena as ethnopolitical party, which goal is to provide political representation of a given nation-ethnos in power institutions

    Characterization of anisotropic nano-particles by using depolarized dynamic light scattering in the near field

    Full text link
    Light scattering techniques are widely used in many fields of condensed and sof t matter physics. Usually these methods are based on the study of the scattered light in the far field. Recently, a new family of near field detection schemes has been developed, mainly for the study of small angle light scattering. These techniques are based on the detection of the light intensity near to the sample, where light scattered at different directions overlaps but can be distinguished by Fourier transform analysis. Here we report for the first time data obtained with a dynamic near field scattering instrument, measuring both polarized and depolarized scattered light. Advantages of this procedure over the traditional far field detection include the immunity to stray light problems and the possibility to obtain a large number of statistical samples for many different wave vectors in a single instantaneous measurement. By using the proposed technique we have measured the translational and rotational diffusion coefficients of rod-like colloidal particles. The obtained data are in very good agreement with the data acquired with a traditional light scattering apparatus.Comment: Published in Optics Express. This version has changes in bibliograph
    corecore