15 research outputs found

    Nano-Opto-Electro-Mechanical Systems

    Get PDF
    A new class of hybrid systems that couple optical, electrical and mechanical degrees of freedom in nanoscale devices is under development in laboratories worldwide. These nano-opto-electro-mechanical systems (NOEMS) offer unprecedented opportunities to dynamically control the flow of light in nanophotonic structures, at high speed and low power consumption. Drawing on conceptual and technological advances from cavity optomechanics, they also bear the potential for highly efficient, low-noise transducers between microwave and optical signals, both in the classical and quantum domains. This Progress Article discusses the fundamental physical limits of NOEMS, reviews the recent progress in their implementation, and suggests potential avenues for further developments in this field.Comment: 27 pages, 3 figures, 2 boxe

    Reducing adhesion energy of micro-relay electrodes by ion beam synthesized oxide nanolayers

    No full text
    Reduction in the adhesion energy of contacting metal electrode surfaces in nano-electro-mechanical switches is crucial for operation with low hysteresis voltage. We demonstrate that by forming thin layers of metal-oxides on metals such as Ru and W, the adhesion energy can be reduced by up to a factor of ten. We employ a low-energy ion-beam synthesis technique and subsequent thermal annealing to form very thin layers (∼2 nm) of metal-oxides (such as RuO and WO ) on Ru and W metal surfaces and quantify the adhesion energy using an atomic force microscope with microspherical tips. 2

    Mechanical relays for digital circuits

    No full text
    corecore