69 research outputs found
Strain development and damage accumulation under ion irradiation of polycrystalline Ge-Sb-Te alloys
The atomic displacement produced by ion irradiation with 150 keV Ar+ ions has been studied in Ge1Sb2Te4 and Ge2Sb2Te5. Electrical, optical and structural measurements have been employed to characterize the induced electrical and structural modifications. At low temperature the amorphization threshold, evaluated by in situ reflectivity measurements, is independent of the composition and the crystalline structure, and it is equal to 1 x 1013 cm-2. At room temperature, at which dynamic annealing can take place, Ge2Sb2Te5 and Ge1Sb2Te4 in the rocksalt phase exhibit the same amorphization threshold (3 x 1013 cm-2). In the trigonal structure, instead, a higher fluence is required to amorphize the Ge1Sb2Te4, compared to Ge2Sb2Te5. The observed differences between the two compositions can be explained considering the effect of dynamic annealing during ion irradiation of the trigonal phase, which is characterized by the presence of van der Waals gaps. These may act as a preferential sink for the diffusion of the displaced atoms and the filling of these gaps tunes the electronic and structural properties. Filling of about 30% of the gaps produces an electronic transition from metallic to insulating behavior. By further increasing the disorder and filling more than 70% of the gaps the films convert into the rocksalt phase
Polariton Nanophotonics using Phase Change Materials
Polaritons formed by the coupling of light and material excitations such as
plasmons, phonons, or excitons enable light-matter interactions at the
nanoscale beyond what is currently possible with conventional optics. Recently,
significant interest has been attracted by polaritons in van der Waals
materials, which could lead to applications in sensing, integrated photonic
circuits and detectors. However, novel techniques are required to control the
propagation of polaritons at the nanoscale and to implement the first practical
devices. Here we report the experimental realization of polariton refractive
and meta-optics in the mid-infrared by exploiting the properties of low-loss
phonon polaritons in isotopically pure hexagonal boron nitride (hBN), which
allow it to interact with the surrounding dielectric environment comprising the
low-loss phase change material, GeSbTe (GST). We demonstrate
waveguides which confine polaritons in a 1D geometry, and refractive optical
elements such as lenses and prisms for phonon polaritons in hBN, which we
characterize using scanning near field optical microscopy. Furthermore, we
demonstrate metalenses, which allow for polariton wavefront engineering and
sub-wavelength focusing. Our method, due to its sub-diffraction and planar
nature, will enable the realization of programmable miniaturized integrated
optoelectronic devices, and will lay the foundation for on-demand biosensors.Comment: 15 pages, 4 figures, typos corrected in v
Joint CNN and Variational Model for Fully-automatic Image Colorization
International audienceThis paper aims to couple the powerful prediction of the convolutional neural network (CNN) to the accuracy at pixel scale of the variational methods. In this work, the limitations of the CNN-based image colorization approaches are described. We then focus on a CNN which is able to compute a statistical distribution of the colors for each pixel of the image based on a learning over a large color image database. After describing its limitation, the variational method of [17] is briefly recalled. This method is able to select a color candidate among a given set while performing a regularization of the result. By combining this approach with a CNN, we designed a fully automatic image coloriza-tion framework with an improved accuracy in comparison with CNN alone. Some numerical experiments demonstrate the increased accuracy performed by our method
Laser-induced control of the optical response of aluminum phthalocyanine chloride complexes dissolved in ethanol
We show that absorption spectra of aluminum chloride phthalocyanine (AlClPc) in the liquid phase can be dynamically modified through the time-resolved interaction with a second laser pulse during a time window on the order of 100 fs. The observed effects can be explained by laser-induced coherent coupling dynamics between the ground state and a bath of excited states as reproduced by a few-level toy model. The presented results help to understand how intense laser fields interact with complex molecules in solution, but in their laser-controlled response still much alike isolated atoms in the gas phase. This understanding can, in the future, be used to modify and control the dynamics in complex systems
- …