3 research outputs found
Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: significance for clay and soil water content mapping
Mediterranean olive trees traditionally grow under rainfed conditions, on poor soils with steep slopes. Rainfall is mainly concentrated during autumn and winter and is characterized by intense rain pulses, separated by dry periods. The use of electromagnetic induction (EMI) techniques in these olive orchards might be questioned since EMI surveys are generally recommended to be performed under moist soil conditions. A 6.7 ha olive orchard was surveyed for EMI-based apparent electrical conductivity (ECa), both under wet and dry soil conditions. In addition, 48 soil samples were analyzed for soil texture and for soil water content (SWC) under both soil conditions. The relationships between ECa, soil texture and SWC, under both soil conditions were evaluated. Despite the significantly larger ECa values measured during the wet survey as compared to the dry survey, a similar spatial correlation structure was found, indicating temporally stable ECa patterns. Significant correlations (r) were found between both surveys for ECa (r = 0.67) and for SWC (r = 0.63). The correlation between SWC and clay content exceeded 0.60 for both surveys, and the correlation between ECa and clay content was twice as high under wet soil conditions as compared to dry soil. In both situations, the ECa surveys revealed the same patterns of soil texture, indicating that moist soil conditions are not an absolute prerequisite for the use of EMI to map the spatial variability of these soil properties. Nonetheless, measuring the ECa under different moisture conditions can provide additional information about soil moisture dynamics