18 research outputs found

    Ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells

    Get PDF
    Introduction Ataxia telangiectasia mutated and Rad3 Related (ATR) protein kinase is a key sensor of single-stranded DNA associated with stalled replication forks and repair intermediates generated during DNA repair. XRCC1 is a critical enzyme in single strand break repair and base excision repair. XRCC1-LIG3 complex is also an important contributor to the ligation step of the nucleotide excision repair response. Methods In the current study, we investigated synthetic lethality in XRCC1 deficient and XRCC1 proficient Chinese Hamster ovary (CHO) and human ovarian cancer cells using ATR inhibitors (NU6027). In addition, we also investigated the ability of ATR inhibitors to potentiate cisplatin cytotoxicity in XRCC1 deficient and XRCC1 proficient CHO and human cancer cells. Clonogenic assays, alkaline COMET assays, γH2AX immunocytochemistry, FACS for cell cycle as well as FITC-annexin V flow cytometric analysis were performed. Results ATR inhibition is synthetically lethal in XRCC1 deficient cells as evidenced by increased cytotoxicity, accumulation of double strand DNA breaks, G2/M cell cycle arrest and increased apoptosis. Compared to cisplatin alone, combination of cisplatin and ATR inhibitor results in enhanced cytotoxicity in XRCC1 deficient cells compared to XRCC1 proficient cells. Conclusions Our data provides evidence that ATR inhibition is suitable for synthetic lethality application and cisplatin chemopotentiation in XRCC1 deficient ovarian cancer cell

    Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines

    Get PDF
    BACKGROUND: The ataxia telangiectasia mutated and Rad3-related kinase (ATR) has a key role in the signalling of stalled replication forks and DNA damage to cell cycle checkpoints and DNA repair. It has long been recognised as an important target for cancer therapy but inhibitors have proved elusive. As NU6027, originally developed as a CDK2 inhibitor, potentiated cisplatin in a CDK2-independent manner we postulated that it may inhibit ATR. METHODS: Cellular ATR kinase activity was determined by CHK1 phosphorylation in human fibroblasts with inducible dominant-negative ATR-kinase dead expression and human breast cancer MCF7 cells. Cell cycle effects and chemo- and radiopotentiation by NU6027 were determined in MCF7 cells and the role of mismatch repair and p53 was determined in isogenically matched ovarian cancer A2780 cells. RESULTS: NU6027 is a potent inhibitor of cellular ATR activity (IC(50)=6.7 μ) and enhanced hydroxyurea and cisplatin cytotoxicity in an ATR-dependent manner. NU6027 attenuated G2/M arrest following DNA damage, inhibited RAD51 focus formation and increased the cytotoxicity of the major classes of DNA-damaging anticancer cytotoxic therapy but not the antimitotic, paclitaxel. In A2780 cells sensitisation to cisplatin was greatest in cells with functional p53 and mismatch repair (MMR) and sensitisation to temozolomide was greatest in p53 mutant cells with functional MMR. Importantly, NU6027 was synthetically lethal when DNA single-strand break repair is impaired either through poly(ADP-ribose) polymerase (PARP) inhibition or defects in XRCC1. CONCLUSION: NU6027 inhibits ATR, impairing G2/M arrest and homologous recombination thus increasing sensitivity to DNA-damaging agents and PARP inhibitors. It provides proof of concept data for clinical development of ATR inhibitors
    corecore