11 research outputs found

    Enabling full representation in science: the San Francisco BUILD project’s agents of change affirm science skills, belonging and community

    No full text
    Abstract Background The underrepresentation of minority students in the sciences constrains innovation and productivity in the U.S. The SF BUILD project mission is to remove barriers to diversity by taking a “fix the institution” approach rather than a “fix the student” one. SF BUILD is transforming education, research, training, and mentoring at San Francisco State University, a premiere public university that primarily serves undergraduates and ethnic minority students. It boasts a large number of faculty members from underrepresented groups (URGs), including many of the project leaders. These leaders collaborate with faculty at the University of California San Francisco (UCSF), a world-class medical research institution, to implement SF BUILD. Key highlights Together, the campus partners are committed to creating intellectually safe and affirming environments grounded in the Signaling Affirmation for Equity (SAFE) model, which is based on robust psychosocial evidence on stereotype threat and its consequences. The SAFE model dictates a multilevel approach to increasing intent to pursue a biomedical career, persistence in STEM fields, and productivity (e.g. publications, presentations, and grants) by implementing transformative activities at the institutional, faculty, and student levels. These activities (1) increase knowledge of the stereotype threat phenomenon; (2) affirm communal and altruistic goals of students and faculty to “give back” to their communities in classrooms and research activities; and (3) establish communities of students, faculty and administrators as “agents of change.” Agents of change are persons committed to establishing and maintaining SAFE environments. In this way, SF BUILD advances the national capacity to address biomedical questions relevant to communities of color by enabling full representation in science. Implications This chapter describes the theoretical and historical context that drive the activities, research and evaluation of the SF BUILD project, and highlights attributes that other institutions can use for institutional change. While this paper is grounded in psychosocial theory, it also provides practical solutions for broadening participation

    Enhancing grant-writing expertise in BUILD institutions: Building infrastructure leading to diversity

    No full text
    BackgroundThe lack of race/ethnic and gender diversity in grants funded by the National Institutes of Health (NIH) is a persistent challenge related to career advancement and the quality and relevance of health research. We describe pilot programs at nine institutions supported by the NIH-sponsored Building Infrastructure Leading to Diversity (BUILD) program aimed at increasing diversity in biomedical research.MethodsWe collected data from the 2016-2017 Higher Education Research Institute survey of faculty and NIH progress reports for the first four years of the program (2015-2018). We then conducted descriptive analyses of data from the nine BUILD institutions that had collected data and evaluated which activities were associated with research productivity. We used Poisson regression and rate ratios of the numbers of BUILD pilots funded, students included, abstracts, presentations, publications, and submitted and funded grant proposals.ResultsTeaching workshops were associated with more abstracts (RR 4.04, 95% CI 2.21-8.09). Workshops on grant writing were associated with more publications (RR 2.64, 95% CI 1.64-4.34) and marginally with marginally more presentations. Incentives to develop courses were associated with more abstracts published (RR 4.33, 95% CI 2.56-7.75). Workshops on research skills and other incentives were not associated with any positive effects.ConclusionsPilot interventions show promise in supporting diversity in NIH-level research. Longitudinal modeling that considers time lags in career development in moving from project development to grants submissions can provide more direction for future diversity pilot interventions

    Stress resistance and C1 metabolism involved in plant colonization of a methanotroph Methylosinus sp. B4S

    No full text
    Methanotrophs are widespread and have been isolated from various environments including the phyllosphere. In this study, we characterized the plant colonization by Methylosinus sp. B4S, an α-proteobacterial methanotroph isolated from plant leaf. The gfp-tagged Methylosinus sp. B4S cells were observed to colonize Arabidopsis leaf surfaces by forming aggregates. We cloned and sequenced the general stress response genes, phyR, nepR and ecfG, from Methylosinus sp. B4S. In vitro analysis showed that the phyR expression level was increased after heat shock challenge, and phyR was shown to be involved in resistance to heat shock and UV light. In the phyllospheric condition, the gene expression level of phyR as well as mmoX and mxaF was found to be relatively high, compared with methane-grown liquid cultures. The phyR-deletion strain as well as the wild-type strain inoculated on Arabidopsis leaves proliferated at the initial phase and then gradually decreased during plant colonization. These results have shed light firstly on the importance of general stress resistance and C1 metabolism in methanotroph living in the phyllosphere
    corecore