10 research outputs found

    High resolution melting-curve (HRM) analysis for the diagnosis of cryptosporidiosis in humans

    No full text
    Cryptosporidiosis of humans is an intestinal disease caused predominantly by infection with Cryptosporidium hominis or C. parvum. This disease is transmitted mainly via the faecal-oral route (water or food) and has major socioeconomic impact globally. The diagnosis and genetic characterization of the main species and population variants (also called “genotypes” and “subgenotypes”) of Cryptosporidium infecting humans is central to the prevention, surveillance and control of cryptosporidiosis, particularly as there is presently no cost effective anti-cryptosporidial chemotherapeutic regimen or vaccine available. In the present study, we established a polymerase chain reaction (PCR)-coupled high resolution melting-curve (HRM) analysis method, utilizing the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA as the genetic marker, for the diagnosis of Cryptosporidium hominis, C. parvum or C. meleagridis infection. An evaluation of the method revealed intra- and inter-assay variabilities of <1.5 and 3.5%, respectively. Cryptosporidium hominis, C. parvum and C. meleagridis were detected in 97, 44 and 2, respectively, of the 143 Cryptosporidium oocyst DNA samples originating from Australians with clinical cryptosporidiosis. The melting profiles characterized by peaks of 72.47 ± 0.33 °C and 74.19 ± 0.45 °C (profile 1), 72.17 ± 0.32 °C (profile 2) and 73.33 ± 0.03 °C (profile 3) genetically identified as C. hominis, C. parvum and C. meleagridis, respectively. In conclusion, PCR-coupled melting analysis of ITS-2 achieved the diagnosis of Cryptosporidium hominis, C. parvum or C. meleagridis infection. This approach is well suited for the rapid screening of large numbers of Cryptosporidium oocyst DNA samples and, although qualitative, is significantly less time-consuming to carry out than electrophoretic analysis and has the added advantage of data storage and analysis capabilities in silico. This method provides a useful tool for investigating the epidemiology and outbreaks of cryptosporidiosis, and could be applicable to species of Cryptosporidium other than those investigated herein

    Detection and differentiation of Cryptosporidium by real-time polymerase chain reaction in stool samples from patients in Rio de Janeiro, Brazil

    No full text
    This study reports the first genetic characterisation of Cryptosporidium isolates in Brazil using real-time polymerase chain reaction (RT-PCR). A total of 1,197 faecal specimens from children and 10 specimens from human immunodeficiency virus-infected patients were collected between 1999-2010 and screened using microscopy. Forty-eight Cryptosporidium oocyst-positive isolates were identified and analysed using a generic TaqMan assay targeting the 18S rRNA to detect Cryptosporidium species and two other TaqMan assays to identify Cryptosporidium hominis and Cryptosporidium parvum. The 18S rRNA assay detected Cryptosporidium species in all 48 of the stool specimens. The C. parvum TaqMan assay correctly identified five/48 stool samples, while 37/48 stool specimens were correctly amplified in the C. hominis TaqMan assay. The results obtained in this study support previous findings showing that C. hominis infections are more prevalent than C. parvum infections in Brazil and they demonstrate that the TaqMan RT-PCR procedure is a simple, fast and valuable tool for the detection and differentiation of Cryptosporidium species
    corecore