443 research outputs found

    Bose-Einstein Correlations from Opaque Sources

    Full text link
    Bose-Einstein correlations in relativistic heavy ion collisions are very different for opaque sources than fortransparent ones. The Bose-Einstein radius parameters measured in two-particle correlation functions depend sensitively on the mean free path of the particles. In particular we find that the outward radius for an opaque source is smaller than the sidewards radius for sufficiently short duration of emission. A long duration of emission can compensate the opacity reduction of the longitudinal radius parameter and explain the experimental measurements of very similar side- and outward radius parameters.Comment: additional material included, 8 pages, revtex, epsfig, 2 figure included, manuscript also available at http://www.nbi.dk/~vischer/publications.htm

    Fluctuations and HBT Scales in Relativistic Nuclear Collisions

    Get PDF
    Bose-Einstein correlations in relativistic heavy ion collisions are examined in a general model containing the essential features of hydrodynamical, cascade as well as other models commonly employed for describing the particle freeze-out. In particular the effects of longitudinal and transverse expansion, emission from surfaces moving in time, the thickness of the emitting layer varying from surface to volume emission and other effects are studied. Model dependences of freeze-out sizes and times are discussed and compared to recent Pb+PbPb+Pb data at 160Aâ‹…\cdotGeV.Comment: 9 pages, revtex, epsfig, 2 figure included, manuscript also available at http://www.nbi.dk/~vischer/publications.htm

    Visualization of SpoVAEa Protein Dynamics in Dormant Spores of <i>Bacillus cereus</i> and Dynamic Changes in Their Germinosomes and SpoVAEa during Germination

    Get PDF
    Bacillus cereus spores, like most Bacillus spores, can survive for years and germinate when their surroundings become suitable, and germination proteins play an important role in the initiation of germination. Because germinated spores lose the extreme resistance of dormant spores, information on the function of germination proteins could be useful in developing new strategies to control B. cereus spores. Prior work has shown that (i) the channel protein SpoVAEa exhibits high-frequency movement in the outer leaflet of the inner membrane (IM) in dormant B. subtilis spores and (ii) the formation of the foci termed germinosomes between two germination proteins, the germinant receptor GerR and the scaffold protein GerD, in developing B. cereus spores is slower than foci formation by GerR and GerD individually. However, the movement dynamics of SpoVAEa in B. cereus spores, and the behavior of the germinosome upon B. cereus spore germination, are not known. In this study, we found that SpoVAEa fluorescent foci in dormant B. cereus spores move on the IM, but slower than in B. subtilis spores, and they likely co-localize transiently with GerD-mScarlet-I in the germinosome. Our results further indicate that (i) the expression of GerR-SGFP2 and SpoVAEa-SGFP2 with GerD-mScarlet-I from a plasmid leads to more heterogeneity and lower efficiency of spore germination in B. cereus, and (ii) germinosome foci observed by Fluorescence resonance energy transfer (FRET) between GerR-SGFP2 and GerD-mScarlet-I can be lost soon after the spore-phase transition. However, this is not always the case, as some GerR-SGFP2 and GerD-mScarlet-I foci continued to exist, co-localize, and even show a weak FRET signal. These data highlight the heterogeneous behavior of spore germination protein complexes and indicate that some complexes may persist beyond the initiation of germination. IMPORTANCE Bacillus cereus is commonly present in soil and infects humans via contaminated food. In this study, we used B. cereus spores to investigate the movement of the spore-specific inner membrane (IM) channel protein SpoVAEa, the interaction between SpoVAEa and the germinosome scaffold protein GerD, and the dynamics of germinosomes with GerR and GerD in spore germination. Our results expand upon observations of interactions between specific B. cereus spore germination proteins, in particular the GerR germinant receptor A, B, and C subunits and GerD, as well as those between SpoVAEa and GerD. The approaches used in this work could also be used to examine the interactions between GerD and SpoVAEa and other germination proteins in spores of other Bacillus species

    Properties of Exotic Matter for Heavy Ion Searches

    Full text link
    We examine the properties of both forms of strange matter, small lumps of strange quark matter (strangelets) and of strange hadronic matter (Metastable Exotic Multihypernuclear Objects: MEMOs) and their relevance for present and future heavy ion searches. The strong and weak decays are discussed separately to distinguish between long-lived and short-lived candidates where the former ones are detectable in present heavy ion experiments while the latter ones in future heavy ion experiments, respectively. We find some long-lived strangelet candidates which are highly negatively charged with a mass to charge ratio like a anti deuteron (M/Z=-2) but masses of A=10 to 16. We predict also many short-lived candidates, both in quark and in hadronic form, which can be highly charged. Purely hyperonic nuclei are bound and have a negative charge while carrying a positive baryon number. We demonstrate also that multiply charmed exotics (charmlets) might be bound and can be produced at future heavy ion colliders.Comment: 10 pages, 4 figures, uses IOP style and epsf.sty, to be published in Journal of Physics, Proceedings of the International Symposium on Strangeness in Quark Matter 1997, April 14-18, Thera (Santorini), Hellas. Corrected typos, added comment about bag constant

    Inhomogeneous Nucleation of Quark-Gluon Plasma in High Energy Nuclear Collisions

    Get PDF
    We estimate the probability that a hard nucleon-nucleon collision is able to nucleate a seed of quark--gluon plasma in the surrounding hot and dense hadronic matter formed during a central collision of two large nuclei at AGS energies. The probability of producing at least one such seed is on the order of 1-100\%. We investigate the influence of quark--gluon plasma formation on the observed multiplicity distribution and find that it may lead to noticable structure in the form of a bump or shoulder.Comment: 16 pages, latex and 12 ps figures available on reques

    Nucleation of Quark--Gluon Plasma from Hadronic Matter

    Full text link
    The energy densities achieved during central collisions of large nuclei at Brookhaven's AGS may be high enough to allow the formation of quark--gluon plasma. Calculations based on relativistic nucleation theory suggest that rare events, perhaps one in every 102^2 or 103^3, undergo the phase transition. Experimental ramifications may include an enhancement in the ratio of pions to baryons, a reduction in the ratio of deuterons to protons, and a larger source size as seen by hadron interferometry.Comment: 22 pages, 7 figures available upon request, NUC--MINN--94/5--

    Scattering in the Presence of Electroweak Phase Transition Bubble Walls

    Full text link
    We investigate the motion of fermions in the presence of an electro\-weak phase transition bubble wall. We derive and solve the Dirac equation for such fer\-mions, and compute the transmission and reflection coefficients for fermions traveling from the symmetric to the asymmetric phases separated by the domain wall.Comment: TPI--MINN--54, NUC--MINN--93/30--T, UMN--TH--1226/93, LaTex, 29 page
    • …
    corecore