5,921 research outputs found

    NMR Knight shifts and linewidths in the Ni‐Pd‐P and Ni‐Pt‐P metallic glasses: Composition and temperature dependences

    Get PDF
    NMR Knight shift and linewidth measurements are reported for the ^(31)P nuclei in the metallic glasses (Ni_(0.50)Pd_(0.50))100−_xP_x (where x=16 to 26.5) and (Ni_yPd_(1−y))_(80)P_(20) (where y=0.20 to 0.80), and both the ^(31)P and 195Pt nuclei in the metallic glass (Ni_yPt_(1−y))_(75)P_(25) (where y=0.20 to 0.68). The results are discussed in terms of the amorphous structure, electronic structure, and stability of transition metal + metalloid metallic glasses

    Fault-tolerant quantum computation versus Gaussian noise

    Get PDF
    We study the robustness of a fault-tolerant quantum computer subject to Gaussian non-Markovian quantum noise, and we show that scalable quantum computation is possible if the noise power spectrum satisfies an appropriate "threshold condition." Our condition is less sensitive to very-high-frequency noise than previously derived threshold conditions for non-Markovian noise.Comment: 30 pages, 6 figure

    Young stars and dust in AFGL437: NICMOS/HST polarimetric imaging of an outflow source

    Full text link
    We present near infrared broad band and polarimetric images of the compact star forming cluster AFGL437 obtained with the NICMOS instrument aboard HST. Our high resolution images reveal a well collimated bipolar reflection nebulosity in the cluster and allow us to identify WK34 as the illuminating source. The scattered light in the bipolar nebulosity centered on this source is very highly polarized (up to 79%). Such high levels of polarization implies a distribution of dust grains lacking large grains, contrary to the usual dust models of dark clouds. We discuss the geometry of the dust distribution giving rise to the bipolar reflection nebulosity and make mass estimates for the underlying scattering material. We find that the most likely inclination of the bipolar nebulosity, south lobe inclined towards Earth, is consistent with the inclination of the large scale CO molecular outflow associated with the cluster, strengthening the identification of WK34 as the source powering it.Comment: 26 pages, 10 figues. Accepted for publication in the Astrophysical Journa

    Do topological models provide good information about vulnerability in electric power networks?

    Full text link
    In order to identify the extent to which results from topological graph models are useful for modeling vulnerability in electricity infrastructure, we measure the susceptibility of power networks to random failures and directed attacks using three measures of vulnerability: characteristic path lengths, connectivity loss and blackout sizes. The first two are purely topological metrics. The blackout size calculation results from a model of cascading failure in power networks. Testing the response of 40 areas within the Eastern US power grid and a standard IEEE test case to a variety of attack/failure vectors indicates that directed attacks result in larger failures using all three vulnerability measures, but the attack vectors that appear to cause the most damage depend on the measure chosen. While our topological and power grid model results show some trends that are similar, there is only a mild correlation between the vulnerability measures for individual simulations. We conclude that evaluating vulnerability in power networks using purely topological metrics can be misleading

    Reply to "Comment on 'Decoherence and dissipation of a quantum harmonic oscillator coupled to two-level systems'"

    Get PDF
    Contrary to the assertion by Mogilevtsev and Shatokhin [preceding paper, Phys. Rev. A 78, 016101 (2008)], we show that the applicability of the Born-Markov master-equation approach in our treatment of the oscillator-spin model depends on the physical situation under study. Heating effects do occur although they may not be accurately captured by second-order perturbation theory inherent in the Born-Markov scheme

    Quantum Walks, Quantum Gates and Quantum Computers

    Get PDF
    The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both a single- and multi-excitation coding, and for more general mappings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included.Comment: 17 pages, 10 figure

    A comparison of optical and radar measurements of mesospheric winds and tides

    Get PDF
    Optical measurements of mesospheric winds by Fabry‐Perot spectrometers, FPSs, at Mawson, 67.6°S 62.9°E, and Davis, 68.6°S 78.0°E, Antarctica are compared with similar measurements obtained using a spaced‐antenna MF radar at Davis. The FPSs observed the OH emission. Different analysis procedures, used to determine the mean wind, and amplitude and phase of the semidiurnal tide, have been compared. At these latitudes the diurnal tide is weak and the semi‐diurnal tide, although highly variable in amplitude, is usually the dominant periodicity. When comparing the amplitude and phase of the semidiurnal tide good agreement is obtained between measurements by the two instruments

    The HR 4796A Debris System: Discovery of Extensive Exo-Ring Dust Material

    Get PDF
    The optically and IR bright, and starlight-scattering, HR 4796A ring-like debris disk is one of the most (and best) studied exoplanetary debris systems. The presence of a yet-undetected planet has been inferred (or suggested) from the narrow width and inner/outer truncation radii of its r = 1.05" (77 au) debris ring. We present new, highly sensitive, Hubble Space Telescope (HST) visible-light images of the HR 4796A circumstellar debris system and its environment over a very wide range of stellocentric angles from 0.32" (23 au) to ~ 15" (1100 au). These very high contrast images were obtained with the Space Telescope Imaging Spectrograph (STIS) using 6-roll PSF-template subtracted coronagraphy suppressing the primary light of HR 4796A and using three image plane occulters and simultaneously subtracting the background light from its close angular proximity M2.5V companion. The resulting images unambiguously reveal the debris ring embedded within a much larger, morphologically complex, and bi-axially asymmetric exoring scattering structure. These images at visible wavelengths are sensitive to, and map, the spatial distribution, brightness, and radial surface density of micron size particles over 5 dex in surface brightness. These particles in the exo-ring environment may be unbound from the system and interacting with the local ISM. Herein we present a new morphological and photometric view of the larger than prior seen HR 4796A exoplanetary debris system with sensitivity to small particles at stellocentric distances an order of magnitude greater than has previously been observed.Comment: 28 pages, 17 figures, accepted for publication in the Astronomical Journal 21 December 201
    • 

    corecore