30,525 research outputs found

    HerMES: deep galaxy number counts from a P(D) fluctuation analysis of SPIRE Science Demonstration Phase observations

    Get PDF
    Dusty, star-forming galaxies contribute to a bright, currently unresolved cosmic far-infrared background. Deep Herschel-Spectral and Photometric Imaging Receiver (SPIRE) images designed to detect and characterize the galaxies that comprise this background are highly confused, such that the bulk lies below the classical confusion limit. We analyse three fields from the Herschel Multi-tiered Extragalactic Survey (HerMES) programme in all three SPIRE bands (250, 350 and 500 μm); parametrized galaxy number count models are derived to a depth of ~2 mJy beam^(−1), approximately four times the depth of previous analyses at these wavelengths, using a probability of deflection [P(D)] approach for comparison to theoretical number count models. Our fits account for 64, 60 and 43 per cent of the far-infrared background in the three bands. The number counts are consistent with those based on individually detected SPIRE sources, but generally inconsistent with most galaxy number count models, which generically overpredict the number of bright galaxies and are not as steep as the P(D)-derived number counts. Clear evidence is found for a break in the slope of the differential number counts at low flux densities. Systematic effects in the P(D) analysis are explored. We find that the effects of clustering have a small impact on the data, and the largest identified systematic error arises from uncertainties in the SPIRE beam

    Smoothness of the Beurling transform in Lipschitz domains

    Full text link
    Let D be a planar Lipschitz domain and consider the Beurling transform of the characteristic function of D, B(1_D). Let 11. In this paper we show that if the outward unit normal N on bD, the boundary of D, belongs to the Besov space B_{p,p}^{a-1/p}(bD), then the Beurling transform of 1_D is in the Sobolev space W^{a,p}(D). This result is sharp. Further, together with recent results by Cruz, Mateu and Orobitg, this implies that the Beurling transform is bounded in W^{a,p}(D) if N belongs to B_{p,p}^{a-1/p}(bD), assuming that ap>2.Comment: 32 page

    Strangeness abundances in p¯-nucleus annihilations

    Get PDF
    Strange particle abundances in small volumes of hot hadronic gas are determined in the canonical ensemble with exact strangeness and baryon number conservation. Substantial density and baryon number dependence is found. A p¯d experiment is examined and applications to p¯-nucleus annihilations are considered

    An n-order (F,a,p,d)- Convex Function and Duality Problem

    Get PDF
    A class of n-order (F,a,p, d)-convex function and their generalization on functions is introduced. Using the assumption on the functions involved,weak, strong ,and converse duality theorems are established for the n-order dual proble

    Ferromagnetism in 2p Light Element-Doped II-oxide and III-nitride Semiconductors

    Full text link
    II-oxide and III-nitride semiconductors doped by nonmagnetic 2p light elements are investigated as potential dilute magnetic semiconductors (DMS). Based on our first-principle calculations, nitrogen doped ZnO, carbon doped ZnO, and carbon doped AlN are predicted to be ferromagnetic. The ferromagnetism of such DMS materials can be attributed to a p-d exchange-like p-p coupling interaction which is derived from the similar symmetry and wave function between the impurity (p-like t_2) and valence (p) states. We also propose a co-doping mechanism, using beryllium and nitrogen as dopants in ZnO, to enhance the ferromagnetic coupling and to increase the solubility and activity

    Role of Coulomb correlation on magnetic and transport properties of doped manganites: La0.5Sr0.5MnO3 and LaSr2Mn2O7

    Full text link
    Results of LSDA and LSDA+U calculations of the electronic structure and magnetic configurations of the 50% hole-doped pseudocubic perovskite La0.5Sr0.5MnO3 and double layered LaSr2Mn2O7 are presented. We demonstrate that the on-site Coulomb correlation (U) of Mn d electrons has a very different influence on the (i) band formations, (ii) magnetic ground states, (iii) interlayer exchange interactions, and (iv) anisotropy of the electrical transport in these two manganites. A possible reason why the LSDA failures in predicting observed magnetic and transport properties of the double layered compound - in contrast to the doped perovskite manganite - is considered on the basis of a p-d hybridization analysis.Comment: 11 pages, 3 figure

    Theory of Weak Localization in Ferromagnetic (Ga,Mn)As

    Get PDF
    We study quantum interference corrections to the conductivity in (Ga,Mn)As ferromagnetic semiconductors using a model with disordered valence band holes coupled to localized Mn moments through a p-d kinetic-exchange interaction. We find that at Mn concentrations above 1% quantum interference corrections lead to negative magnetoresistance, i.e. to weak localization (WL) rather than weak antilocalization (WAL). Our work highlights key qualitative differences between (Ga,Mn)As and previously studied toy model systems, and pinpoints the mechanism by which exchange splitting in the ferromagnetic state converts valence band WAL into WL. We comment on recent experimental studies and theoretical analyses of low-temperature magnetoresistance in (Ga,Mn)As which have been variously interpreted as implying both WL and WAL and as requiring an impurity-band interpretation of transport in metallic (Ga,Mn)As.Comment: 16 pages, 10 figures; submitted to Phys. Rev.
    corecore