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Abstract 

A class of n-order ),,,( dF  -convex function and their generalization on functions is introduced. Using the assumption 

on the functions involved, weak, strong, and converse duality theorems are established for the n-order dual problem  
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1  Introducation 
The importance of convex function is well known in optimization theory. But for many mathematical models used in decision 
science, economic, management science, applied mathematics and engineering. The notion of convexity does no longer 
suffice. So it is possible to generalize the notion of convexity and to extend the validity of result to larger classes of 
optimization problems. Consequently, various generalizations of convex functions have been introduced in the literature. 

More specifically, the concept of ),( F -convexity was introduce by Preda[8] an extension of F  - convexity defined by 

Hanson and Mond[7], generalized concavity and duality, in generalized concavity in Optimization and economics is presnted 
by [6] and  -convexity given by Vial[9] Gualti and Islam [4], the generalized convexity and duality for multiobjective 

programming and the proper efficiency and duality for vector valued optimization problem were introduced by Weir and 
Mond [10, 11]. Ahmed [2] established optimality conditions and duality results for multiobjective programming problems 

involving F  - convexity and ),( F  -convexity assumptions respectively. And also, Ahmed and Husain discussed in [1] 

the second order  dF ,,,  -convexity and duality in multiobjective programming. 

In this paper we will define  n-order  dF ,,,  -convexity and duality in nonlinear programming. These concepts are 

then used to develop weak, strong, and strict converse duality theorem for n-order dual problem. 

Let M  be a nonempty subset of 
nR  and let miRMgRMf m

i 1,2,...,=,:,:   are assumed to be n- 

differentiable functions over M  . Consider the following nonlinear programming problem P  

 

 

 

 

Definition 1 A functional RRMMF n :  is said to be sublinear in its third and component if for all Mxx ,  
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Definition 2 An n-differentiable function f  , RMf :  is said to be n- order ),,,( dF  - convex function at x  on 

M  if for all Mx , then there exists a vector 
nRP , a real valued function {0}:  RMM ,a real valued 

function RMMd :  and a real number   such that  

 


















  )()(
!

1
),(;,)()(

!

1
)()(

1=

xfP
r

xxxxFxfP
n

xfxf r
n

r

n   

 
2 ( , )d x x  (1.2) 

where 
r

n

n

r

x
p

x
p

x
pP )....(=)(

2

2

1

1













  

Definition 3 An n-differentiable function f  , RMf :  is said to be n- order ),,,( dF  - pseudoconvex function at 

x  on M  if for all Mx , then there exists a vector 
nRP , a real valued function {0}:  RMM ,a real 

valued function RMMd :  and a real number   such that 
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Definition 4 An n-differentiable function f  , RMf :  is said to be strictly n-order ),,,( dF  - pseudoconvex 

function at x  on M  if for all Mx , then there exists a vector 
nRP , a real valued function 

{0}:  RMM ,a real valued function RMMd :  and a real number   such that 
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Definition 5 An n-differentiable function f  , RMf :  is said to be n- order ),,,( dF  - quasiconvex function at 

x  on M  if for all Mx , then there exists a vector 
nRP , a real valued function {0}:  RMM ,a real 

valued function RMMd :  and a real number   such that 
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Definition 6 An n-differentiable function f  , RMf :  is said to be strongly n-order ),,,( dF  - pseudoconvex 

function at x  on M  if for all Mx , then there exists a vector 
nRP , a real valued function 

{0}:  RMM ,a real valued function RMMd :  and a real number   such that 
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Example 7 Consider the function RRMf  )(=:  such that .3=)( 45 xxxf  If we define the function  

 xxxxdxxxxxF  =),(,4)(=);,(   

 xxP
xx

xx 


=,
2

1
=),(  

then for f0,=  is 5-order ),,,( dF   -convex at 0=x  with respect to the vector xxP =   

Theorem 8 (Kuhn-Tucker necessary conditions)[3, 5] Assume that 
x is an optimal solution of the problem 1.1 at which the 

Kuhn-Tucker constraints qualification is satisfied . Then there exists 
mR 0  for which 0  such that 
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 mixgii 1,2,...,=0,=)(  

2  n-Order duality Nonlinear Programming Problems 

In this section, we generalize the Mond-Weir type second order dual problem to n-order dual problem associated with the 

problem )(P  and establish weak,strong and strict converse duality theorem under generalized n-order  dF ,,, 

-convexity )(MD   
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1

( ) ( ) ( )
!

nf u P f u
n

   (2.1) 

             Subject to 

=1 =1 =1

1 1
( ) ( ) ( ) ( ) = 0

! !

n m n
r r

i i

r i r

P f u P g u
r r

     (2.2) 

 

 0�)()(
!

1
)(

1=1=1=

ugP
r

ug i

r

i

n

r

m

i

ii

m

i

    (2.3) 

 mii 1,2,...,=0.  (2.4) 

Theorem 9 (Weak duality). Suppose that for all feasible in )(P and all feasible ),,...,,( 1 Pu m  in )(MD   

(i) (.)
1= ii

m

i
g  is n-order ),,,( dF  -quasiconvex at ,u and assume that any 

one of the following conditions holds: 

(ii) .1,2,...,=0,> mii and (.)f  is strong n-order ),,,( 11 dF  pseudoconvex 

at u  with 0�1
1

1

1     

(iii) (.)f is strictly n-order ),,,( 22 dF  pseudoconvex  at u  with 

0.�2

1

2

1     

Then the following cannot hold 
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Proof. Let x  be any feasible solution in )(P  and ),,...,,( 1 pu m be any feasible solution in ).(MD Then we have  
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using n-order ),,,( dF  -quasiconvexity of (.)
1= ii
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Since 0>),( ux  the inequality 2.7 with the sublinearity of F yields  

 ),(),(�)()(
!

;, 21

1=1=

uxduxugP
r

uxF i

ri
n

r

m

i


 



















  (2.8) 

The first dual constraint and the sublinearity of F give  
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The inequality 2.8 and 2.9 
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Now suppose contrary to the result that 2.5 holds ,i.e. 
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From the inequality 2.12 and using the sublinearity of F with 0,>),(1 ux we obtain 
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which contradicts 2.10. Hence 2.5 cannot hold. 

On the other hand , when hypothesis (iii) holds, the inequality 2.11 implies  

 ),()()(
!

1
),(;, 2

2

1=

2 uxdufP
r

uxuxF r
n

r

 


















  (2.14) 

Since F is sublinear and 0,>),(2 ux it follows from 2.14 that  
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a contradiction to 2.10. hence 2.5 can not hold 

Theorem 10 (Strong duality) let x  is an optimal solution of )(P at which the Kuhn-Tucker constraint qualification is 

satisfied. Then there exists 
mR  such that 0)=,,( Px   is feasible for )(MD and the corresponding values of 

)(P and )(MD are equal.  

Proof. Since x  an optimal solution of )(P  at which the Kuhn-Tucker constraints qualification is satisfied,then by 

Theorem 1,there exists 
mR  such that 
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Therefore 0)=,,( Px  is feasible for )(MD and the corresponding values of )(P  and )(MD  are equal. From the 

weak duality theorem 0)=,,( Px  is an optimal solution of the problem ).(MD  

Theorem 11 (Strict converse duality Thorem) Let x and ),,...,,( 1 pu m are optimal solution of )(P and ),(MD
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respectively,such that  
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Then ,= ux that is, u  is an optimal solution of )(P  

Proof. We assume that ux   and reach a contradiction.Since x  and ),,...,,,( 21 pu m  are, respectively, the 
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Using n-order ),,,( dF  -quasiconvexity of (.)
1= ii
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Since 0,>),( ux the inequality 2.17 along with the sublinearity of F  yields 
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The first dual constraint and the sublinearity of F  imply  
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The inequality 2.18 ,7 and 01
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Using strict n-order ),,,( 11 dF  -pseudoconvexity of (.)f  with 0>),( ux  
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contradicting 2.15 

When the hypothesis (ii)holds ,it follows from 2.16 that  
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Since 0>),( ux ,the above inequality with the sublinearity of F  gives  
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Which on using first dual constraint with the sublinearity of F  implies  
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As 0,1
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1    we obtain  
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the n-order ),,,( 11 dF  -quasiconvexity of (.)f  and 2.24 with 0>),( ux  yield  
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again contradicting 2.15 

Conclusion 12. In this paper, n-order ),,,( dF  -convexity and its generalization are introduced, which many other 

generalized convexity concept in mathematical programming as the special case. our concepts are suitable to discuss the 
weak,strong and strict converse duality theorems for the generalization of Mond-Wier type second order dual problem 
(n-order dual problem).  
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