19 research outputs found

    Structural mechanism of JH delivery in hemolymph by JHBP of silkworm, Bombyx mori

    Get PDF
    Juvenile hormone (JH) plays crucial roles in many aspects of the insect life. All the JH actions are initiated by transport of JH in the hemolymph as a complex with JH-binding protein (JHBP) to target tissues. Here, we report structural mechanism of JH delivery by JHBP based upon the crystal and solution structures of apo and JH-bound JHBP. In solution, apo-JHBP exists in equilibrium of multiple conformations with different orientations of the gate helix for the hormone-binding pocket ranging from closed to open forms. JH-binding to the gate-open form results in the fully closed JHBP-JH complex structure where the bound JH is completely buried inside the protein. JH-bound JHBP opens the gate helix to release the bound hormone likely by sensing the less polar environment at the membrane surface of target cells. This is the first report that provides structural insight into JH signaling

    Insect juvenile hormone binding protein shows ancestral fold present in human lipid-binding

    No full text
    Low molecular weight juvenile hormone binding proteins (JHBPs) are specific carriers of juvenile hormone (JH) in the hemolymph of butterflies and moths. As hormonal signal transmitters, these proteins exert a profound effect on insect development. The crystal structure of JHBP from Galleria mellonella shows an unusual fold consisting of a long alpha-helix wrapped in a highly curved antiparallel beta-sheet. JHBP structurally resembles the folding pattern found in tandem repeats in some mammalian lipid-binding proteins, with similar organization of one cavity and a disulfide bond between the long helix and the beta-sheet. JHBP reveals, therefore, an archetypal fold used by nature for hydrophobic ligand binding. The JHBP molecule possesses two hydrophobic cavities. Several lines of experimental evidence conclusively indicate that JHBP binds JH in only one cavity, close to the N- and C-termini, and that this binding induces a structural change. The second cavity, located at the opposite end of the molecule, could bind another ligand

    Insect juvenile hormone binding protein shows ancestral fold present in human lipid-binding

    No full text
    Low molecular weight juvenile hormone binding proteins (JHBPs) are specific carriers of juvenile hormone (JH) in the hemolymph of butterflies and moths. As hormonal signal transmitters, these proteins exert a profound effect on insect development. The crystal structure of JHBP from Galleria mellonella shows an unusual fold consisting of a long alpha-helix wrapped in a highly curved antiparallel beta-sheet. JHBP structurally resembles the folding pattern found in tandem repeats in some mammalian lipid-binding proteins, with similar organization of one cavity and a disulfide bond between the long helix and the beta-sheet. JHBP reveals, therefore, an archetypal fold used by nature for hydrophobic ligand binding. The JHBP molecule possesses two hydrophobic cavities. Several lines of experimental evidence conclusively indicate that JHBP binds JH in only one cavity, close to the N- and C-termini, and that this binding induces a structural change. The second cavity, located at the opposite end of the molecule, could bind another ligand
    corecore