77 research outputs found

    Nanopore surface coating delivers nanopore size and shape through conductance-based sizing

    Get PDF
    The performance of nanopore single-molecule sensing elements depends intimately on their physical dimensions and surface chemical properties. These factors underpin the dependence of the nanopore ionic conductance on electrolyte concentration, yet the measured, or modeled, dependence only partially illuminates the details of geometry and surface chemistry. Using the electrolyte-dependent conductance data before and after selective surface functionalization of solid-state nanopores, however, introduces more degrees of freedom and improves the performance of conductance-based nanopore characterizations. Sets of representative nanopore profiles were used to generate conductance data, and the nanopore shape and exact dimensions were identified, through conductance alone, by orders-of-magnitude 3 reductions in the geometry optimization metrics. The optimization framework could similarly be used to evaluate the nanopore surface coating thickness

    Dendrimers in Nanoscale Confinement: The Interplay between Conformational Change and Nanopore Entrance

    Get PDF
    Hyperbranched dendrimers are nanocarriers for drugs, imaging agents, and catalysts. Their nanoscale confinement is of fundamental interest and occurs when dendrimers with bioactive payload block or pass biological nanochannels or when catalysts are entrapped in inorganic nanoporous support scaffolds. The molecular process of confinement and its effect on dendrimer conformations are, however, poorly understood. Here, we use single-molecule nanopore measurements and molecular dynamics simulations to establish an atomically detailed model of pore dendrimer interactions. We discover and explain that electrophoretic migration of polycationic PAMAM dendrimers into confined space is not dictated by the diameter of the branched molecules but by their size and generation-dependent compressibility. Differences in structural flexibility also rationalize the apparent anomaly that the experimental nanopore current read-out depends in nonlinear fashion on dendrimer size. Nanoscale confinement is inferred to reduce the protonation of the polycationic structures. Our model can likely be expanded to other dendrimers and be applied to improve the analysis of biophysical experiments, rationally design functional materials such as nanoporous filtration devices or nanoscale drug carriers that effectively pass biological pores

    Caractérisation de l'organisation moléculaire de polysaccharides par extrusion et confinement dans des Nanopores

    No full text
    Conférence du 15 au 18 Mai 2006. Communication par affiche

    Dynamics of Colloids in Single Solid-State Nanopores

    No full text
    International audienceWe use solid-state nanopores to study the dynamics of single electrically charged colloids through nanopores as a function of applied voltage. We show that the presence of a single colloid inside of the pore changes the pore resistance, in agreement with theory. The normalized ionic current blockade increases with the applied voltage and remains constant when the electrical force increases even more. We observe short and long events of current blockades. Their durations are associated, respectively, with low and high current variation. The ratio of long events increases with the electrical force. The events frequency increases exponentially as a function of applied voltage and saturates at high voltage. The dwelling time decreases exponentially at low and medium voltages when the electrical force increases. At large voltages, this time decreases inversely proportionally to the applied voltage. The long events are associated with translocation events. We show that the dynamics of colloids through the nanopore is governed mainly by two mechanisms, by the free-energy barrier at relatively low and medium voltages and by the electrophoresis mechanism at high voltage

    Unfolding of Proteins and Long Transient Conformations Detected by Single Nanopore Recording

    No full text
    International audienceWe study the electrophoretic blockades due to entries of partially unfolded proteins into a nanopore as a function of the concentration of the denaturing agent. Short and long pore blockades are observed by electrical detection. Short blockades are due to the passage of completely unfolded proteins, their frequency increases as the concentration of the denaturing agent increases, following a sigmoidal denaturation curve. Long blockades reveal partially folded conformations. Their duration increases as the proteins are more folded. The observation of a Vogel-Fulcher law suggests a glassy behavior

    Direct FIB fabrication and integration of “single nanopore devices” for the manipulation of macromolecules

    No full text
    International audienceHere we propose to detail an innovative FIB instrumental approach and processing methodologies we have developed for sub-10 nm nanopore fabrication. The main advantage of our method is first to allow direct fabrication of nanopores in relatively large quantities with an excellent reproducibility. Second our approach offers the possibility to further process or functionalize the vicinity of each pore on the same scale keeping the required deep sub-10 nm scale positioning and patterning accuracy. We will summarise the optimisation efforts we have conducted aiming at fabricating thin (10-100 nm thick) and high quality dielectric films to be used as a template for the nanopore fabrication, and at performing efficient and controlled FIB nanoengraving of such a delicate media. Finally, we will describe the method we have developed for integrating these “single nanopore devices” in electrophoresis experiments and our preliminary measurements
    • …
    corecore