27 research outputs found

    NFBLab—A Versatile Software for Neurofeedback and Brain-Computer Interface Research

    Get PDF
    Neurofeedback (NFB) is a real-time paradigm, where subjects learn to volitionally modulate their own brain activity recorded with electroencephalographic (EEG), magnetoencephalographic (MEG) or other functional brain imaging techniques and presented to them via one of sensory modalities: visual, auditory or tactile. NFB has been proposed as an approach to treat neurological conditions and augment brain functions. Although the early NFB studies date back nearly six decades ago, there is still much debate regarding the efficiency of this approach and the ways it should be implemented. Partly, the existing controversy is due to suboptimal conditions under which the NFB training is undertaken. Therefore, new experimental tools attempting to provide optimal or close to optimal training conditions are needed to further exploration of NFB paradigms and comparison of their effects across subjects and training days. To this end, we have developed open-source NFBLab, a versatile, Python-based software for conducting NFB experiments with completely reproducible paradigms and low-latency feedback presentation. Complex experimental protocols can be configured using the GUI and saved in NFBLab's internal XML-based language that describes signal processing tracts, experimental blocks and sequences including randomization of experimental blocks. NFBLab implements interactive modules that enable individualized EEG/MEG signal processing tracts specification using spatial and temporal filters for feature selection and artifacts removal. NFBLab supports direct interfacing to MNE-Python software to facilitate source-space NFB based on individual head models and properly tailored individual inverse solvers. In addition to the standard algorithms for extraction of brain rhythms dynamics from EEG and MEG data, NFBLab implements several novel in-house signal processing algorithms that afford significant reduction in latency of feedback presentation and may potentially improve training effects. The software also supports several standard BCI paradigms. To interface with external data acquisition devices NFBLab employs Lab Streaming Layer protocol supported by the majority of EEG vendors. MEG devices are interfaced through the Fieldtrip buffer

    Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist)

    Get PDF
    Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.</p

    Model-based approach to EEG classification

    No full text
    A method to construct a feature space for electroencephalogram (EEG) classification based on the localization of brain’s electrical activity sources is developed.The purpose of the work is to show that a model-based approach to the construction of feature space for EEG classification allows us to achieve the accuracy comparable to existing classical approaches at the same time giving a number of opportunities to further increase it and having clear neurophysiological interpretation.Experimental researches on real EEG show that the accuracy of the proposed method is comparable to the accuracy of the classical method of classification in brain-computer interfaces. The simplest statistical characteristics of dipole moments for equivalent current dipoles are chosen as features for classification, and the nearest neighbour algorithm is used for classification.Application of the proposed algorithm is diagnostics of brain diseases and braincomputer interfaces.The first section describes a method of modeling the EEG using equivalent current dipoles.In the second section the statement of the EEG classification problem is formulated.In the third section we propose a method of constructing a feature space for EEG classification based on the equivalent current dipoles characteristics.The fourth section is dedicated to the experimental research of the proposed method on real EEG and to discussion of the results achieved.</p

    Navigation Patterns and Scent Marking: Underappreciated Contributors to Hippocampal and Entorhinal Spatial Representations?

    No full text
    According to the currently prevailing theory, hippocampal formation constructs and maintains cognitive spatial maps. Most of the experimental evidence for this theory comes from the studies on navigation in laboratory rats and mice, typically male animals. While these animals exhibit a rich repertoire of behaviors associated with navigation, including locomotion, head movements, whisking, sniffing, raring and scent marking, the contribution of these behavioral patterns to the hippocampal spatially-selective activity has not been sufficiently studied. Instead, many publications have considered animal position in space as the major variable that affects the firing of hippocampal place cells and entorhinal grid cells. Here we argue that future work should focus on a more detailed examination of different behaviors exhibited during navigation to better understand the mechanism of spatial tuning in hippocampal neurons. As an inquiry in this direction, we have analyzed data from two datasets, shared online, containing recordings from rats navigating in square and round arenas. Our analyses revealed patchy navigation patterns, evident from the spatial maps of animal position, velocity and acceleration. Moreover, grid cells available in the datasets exhibited similar periodicity as the navigation parameters. These findings indicate that activity of grid cells could affect navigation parameters and/or vice versa. Additionally, we speculate that scent marks left by navigating animals could contribute to neuronal responses while rats and mice sniff their environment; the act of sniffing could modulate neuronal discharges even in virtual visual environments. Accordingly, we propose that future experiments should contain additional controls for navigation patterns, whisking, sniffing and maps composed of scent marks

    MEG signatures of long-term effects of agreement and disagreement with the majority

    No full text
    People often change their beliefs by succumbing to an opinion of others. Such changes are often referred to as effects of social influence. While some previous studies have focused on the reinforcement learning mechanisms of social influence or on its internalization, others have reported evidence of changes in sensory processing evoked by social influence of peer groups. In this study, we used magnetoencephalographic (MEG) source imaging to further investigate the long-term effects of agreement and disagreement with the peer group. The study was composed of two sessions. During the first session, participants rated the trustworthiness of faces and subsequently learned group rating of each face. In the first session, a neural marker of an immediate mismatch between individual and group opinions was found in the posterior cingulate cortex, an area involved in conflict-monitoring and reinforcement learning. To identify the neural correlates of the long-lasting effect of the group opinion, we analysed MEG activity while participants rated faces during the second session. We found MEG traces of past disagreement or agreement with the peers at the parietal cortices 230 ms after the face onset. The neural activity of the superior parietal lobule, intraparietal sulcus, and precuneus was significantly stronger when the participant’s rating had previously differed from the ratings of the peers. The early MEG correlates of disagreement with the majority were followed by activity in the orbitofrontal cortex 320 ms after the face onset. Altogether, the results reveal the temporal dynamics of the neural mechanism of long-term effects of disagreement with the peer group: early signatures of modified face processing were followed by later markers of long-term social influence on the valuation process at the ventromedial prefrontal cortex.Peer reviewe
    corecore