12 research outputs found

    Intracellular polyphosphate length characterization in polyphosphate accumulating microorganisms (PAOs): Implications in PAO phenotypic diversity and enhanced biological phosphorus removal performance

    Get PDF
    Polyphosphate (polyP) accumulating organisms (PAOs) are the key agent to perform enhanced biological phosphorus removal (EBPR) activity, and intracellular polyP plays a key role in this process. Potential associations between EBPR performance and the polyP structure have been suggested, but are yet to be extensively investigated, mainly due to the lack of established methods for polyP characterization in the EBPR system. In this study, we explored and demonstrated that single-cell Raman spectroscopy (SCRS) can be employed for characterizing intracellular polyPs of PAOs in complex environmental samples such as EBPR systems. The results, for the first time, revealed distinct distribution patterns of polyP length (as Raman peak position) in PAOs in lab-scale EBPR reactors that were dominated with different PAO types, as well as among different full-scale EBPR systems with varying configurations. Furthermore, SCRS revealed distinctive polyP composition/features among PAO phenotypic sub-groups, which are likely associated with phylogenetic and/or phenotypic diversity in EBPR communities, highlighting the possible resolving power of SCRS at the microdiversity level. To validate the observed polyP length variations via SCRS, we also performed and compared bulk polyP length characteristics in EBPR biomass using conventional polyacrylamide gel electrophoresis (PAGE) and solution 31P nuclear magnetic resonance (31P-NMR) methods. The results are consistent with the SCRS findings and confirmed the variations in the polyP lengths among different EBPR systems. Compared to conventional methods, SCRS exhibited advantages as compared to conventional methods, including the ability to characterize in situ the intracellular polyPs at subcellular resolution in a label-free and non-destructive way, and the capability to capture subtle and detailed biochemical fingerprints of cells for phenotypic classification. SCRS also has recognized limitations in comparison with 31P-NMR and PAGE, such as the inability to quantitatively detect the average polyP chain length and its distribution. The results provided initial evidence for the potential of SCRS-enabled polyP characterization as an alternative and complementary microbial community phenotyping method to facilitate the phenotype-function (performance) relationship deduction in EBPR systems

    Modeling electron competition among nitrogen oxides reduction and N 2O accumulation in denitrification

    No full text
    Competition for electrons among different steps of denitrification has previously been shown to occur, and to play an important role in the accumulation and emission of N2O in wastewater treatment. However, this electron competition is not recognized in the current denitrification models, limiting their ability to predict N2O accumulation during denitrification. In this work, a new denitrification model is developed for wastewater treatment processes. It describes electron competition among the four steps of denitrification, through modeling the carbon oxidation and nitrogen reduction processes separately, in contrast to the existing models that directly couple these two types of processes. Electron carriers are introduced to link carbon oxidation, which donates electrons to carriers, and nitrogen oxides reduction, which receives electrons from these carriers. The relative ability of each denitrification step to compete for electrons is modeled through the use of different affinity constants with reduced carriers. Model calibration and validation results demonstrate that the developed model is able to reasonably describe the nitrate, nitrite, and N2O reduction rates of a methanol-utilizing denitrifying culture under various carbon and nitrogen oxides supplying conditions. The model proposed, while subject to further validation, is expected to enhance our ability to predict N2O accumulation in denitrification
    corecore