25 research outputs found

    Experimental evaluation of receptor-ligand interactions of dual-targeted particles to inflamed endothelium

    Get PDF
    Vascular-targeted carriers (VTCs) are often designed as leukocyte mimics, conjugated with ligands that target leukocyte adhesion molecules (LAMs) to facilitate specific adhesion to diseased endothelium. VTCs must adhere in regions with dynamic blood flow, frequently requiring multiple ligand-receptor (LR) pairs to provide particle adhesion and high disease specificity. To study LR kinetics under flow, multiple research groups have used protein-coated plates to study the adhesion and rolling of dual-targeted particles in vitro.1-4 While important knowledge is contributed by these studies, they lack the complexity of a diseased physiologic endothelium, as spatiotemporal LAM expression varies widely. Despite decades of research with the ambition of mimicking leukocytes, the specificity of multiple LAM-targeted VTCs remains poorly understood, especially in physiological environments. More specifically, there is a lack of mechanistic understanding of how multiple ligands interact with biologically complex endothelial surfaces under dynamic in vivo environments. Please click Additional Files below to see the full abstract

    Evaluation of receptorâ ligand mechanisms of dualâ targeted particles to an inflamed endothelium

    Full text link
    Vascularâ targeted carriers (VTCs) are designed as leukocyte mimics, decorated with ligands that target leukocyte adhesion molecules (LAMs) and facilitate adhesion to diseased endothelium. VTCs require different design considerations than other targeted particle therapies; adhesion of VTCs in regions with dynamic blood flow requires multiple ligandâ receptor (LR) pairs that provide particle adhesion and disease specificity. Despite the ultimate goal of leukocyte mimicry, the specificity of multiple LAMâ targeted VTCs remains poorly understood, especially in physiological environments. Here, we investigate particle binding to an inflamed mesentery via intravital microscopy using a series of particles with wellâ controlled ligand properties. We find that the total number of sites of a single ligand can drive particle adhesion to the endothelium, however, combining ligands that target multiple LR pairs provides a more effective approach. Combining sites of sialyl Lewis A (sLeA) and antiâ intercellular adhesion moleculeâ 1 (aICAM), two adhesive molecules, resulted in ⠟3â 7â fold increase of adherent particles at the endothelium over singleâ ligand particles. At a constant total ligand density, a particle with a ratio of 75% sLeA: 25% aICAM resulted in more than 3â fold increase over all over other ligand ratios tested in our in vivo model. Combined with in vivo and in silico data, we find the best dualâ ligand design of a particle is heavily dependent on the surface expression of the endothelial cells, producing superior adhesion with more particle ligand for the lesserâ expressed receptor. These results establish the importance of considering LRâ kinetics in intelligent VTC ligand design for future therapeutics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/133573/1/btm210008-sup-0007-suppinfo07.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133573/2/btm210008_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133573/3/btm210008.pd

    Interplay between Rolling and Firm Adhesion Elucidated with a Cell-Free System Engineered with Two Distinct Receptor-Ligand Pairs

    Get PDF
    The firm arrest of leukocytes to the endothelium during inflammation is known to be mediated by endothelial intercellular adhesion molecules (ICAMs) binding to activated integrins displayed on leukocyte surface. Selectin-ligand interactions, which mediate rolling, are believed to be important for facilitating firm adhesion, either by activating integrins or by facilitating the transition to firm adhesion by making it easier for integrins to bind. Although leukocytes employ two distinct adhesion molecules that mediate different states of adhesion, the fundamental biophysical mechanisms by which two pairs of adhesion molecules facilitate cell adhesion is not well understood. In this work, we attempt to understand the interaction between two molecular systems using a cell-free system in which polystyrene microspheres functionalized with the selectin ligand, sialyl Lewis(X) (sLe(X)), and an antibody against ICAM-1, aICAM-1, are perfused over P-selectin/ICAM-1 coated surfaces in a parallel plate flow chamber. Separately, sLe(X)/P-selectin interactions support rolling and aICAM-1/ICAM-1 interactions mediate firm adhesion. Our results show that sLe(X)/aICAM-1 microspheres will firmly adhere to P-selectin/ICAM-1 coated surfaces, and that the extent of firm adhesion of microspheres is dependent on wall shear stress within the flow chamber, sLe(X)/aICAM-1 microsphere site density, and P-selectin/ICAM-1 surface density ratio. We show that P-selectin's interaction with sLe(X) mechanistically facilitates firm adhesion mediated by antibody binding to ICAM-1: the extent of firm adhesion for the same concentration of aICAM-1/ICAM-1 interaction is greater when sLe(X)/P-selectin interactions are present. aICAM-1/ICAM-1 interactions also stabilize rolling by increasing pause times and decreasing average rolling velocities. Although aICAM-1 is a surrogate for β(2)-integrin, the kinetics of association between aICAM-1 and ICAM-1 is within a factor of 1.5 of activated integrin binding ICAM-1, suggesting the findings from this model system may be insightful to the mechanism of leukocyte firm adhesion. In particular, these experimental results show how two molecule systems can interact to produce an effect not achievable by either system alone, a fundamental mechanism that may pervade leukocyte adhesion biology

    I-Domain of Lymphocyte Function-Associated Antigen-1 Mediates Rolling of Polystyrene Particles on ICAM-1 under Flow

    Get PDF
    In their active state, β(2)-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wild-type (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in ι(L)β(2) heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation

    Extracellular vesicles as drug delivery systems:lessons from the liposome field

    No full text
    \u3cp\u3eExtracellular vesicles (EVs) are membrane-derived particles surrounded by a (phospho)lipid bilayer that are released by cells in the human body. In addition to direct cell-to-cell contact and the secretion of soluble factors, EVs function as another mechanism of intercellular communication. These vesicles are able to efficiently deliver their parental cell-derived molecular cargo to recipient cells, which can result in structural changes at an RNA, protein, or even phenotypic level. For this reason, EVs have recently gained much interest for drug delivery purposes. In contrast to these 'natural delivery systems', synthetic (phospho)lipid vesicles, or liposomes, have been employed as drug carriers for decades, resulting in several approved liposomal nanomedicines used in the clinic. This review discusses the similarities and differences between EVs and liposomes with the focus on features that are relevant for drug delivery purposes such as circulation time, biodistribution, cellular interactions and cargo loading. By applying beneficial features of EVs to liposomes and vice versa, improved drug carriers can be developed which will advance the field of nanomedicines and ultimately improve patient outcomes. While the application of EVs for therapeutic drug delivery is still in its infancy, issues regarding the understanding of EV biogenesis, large-scale production and in vivo interactions need to be addressed in order to develop successful and cost-effective EV-based drug delivery systems. \u3c/p\u3

    Neutrophil–Particle Interactions in Blood Circulation Drive Particle Clearance and Alter Neutrophil Responses in Acute Inflammation

    No full text
    Although nano- and microparticle therapeutics have been studied for a range of drug delivery applications, the presence of these particles in blood flow may have considerable and understudied consequences to circulating leukocytes, especially neutrophils, which are the largest human leukocyte population. The objective of this work was to establish if particulate drug carriers in circulation interfere with normal neutrophil adhesion and migration. Circulating blood neutrophils <i>in vivo</i> were found to be capable of rapidly binding and sequestering injected carboxylate-modified particles of both 2 and 0.5 μm diameter within the bloodstream. These neutrophil–particle associations within the vasculature were found to suppress neutrophil interactions with an inflamed mesentery vascular wall and hindered neutrophil adhesion. Furthermore, in a model of acute lung injury, intravenously administered drug-free particles reduced normal neutrophil accumulation in the airways of C57BL/6 mice between 52% and 60% <i>versus</i> particle-free mice and between 93% and 98% in BALB/c mice. This suppressed neutrophil migration resulted from particle-induced neutrophil diversion to the liver. These data indicate a considerable acute interaction between injected particles and circulating neutrophils that can drive variations in neutrophil function during inflammation and implicate neutrophil involvement in the clearance process of intravenously injected particle therapeutics. Such an understanding will be critical toward both enhancing designs of drug delivery carriers and developing effective therapeutic interventions in diseases where neutrophils have been implicated
    corecore