1,017 research outputs found

    The rise of dentine hypersensitivity and tooth wear in an ageing population

    Get PDF
    Our understanding of the aetiology of dentine hypersensitivity (DH) has changed dramatically over the past few decades. It is no longer an enigma, but other problems exist. The prevalence of DH in the world and in particular in the UK is increasing, predominately due to increases in tooth wear and the erosive dietary intake in the younger population. DH is increasingly reported in all age groups and is shown to provide clinical indication of an active erosive tooth wear. As the population ages and possibly retain teeth for longer, the likelihood of tooth wear and DH could increase. This paper describes the prevalence, aetiology, diagnosis and management of DH in relation to tooth wear, which work together through a surface phenomenon. The aim is to raise awareness of the conditions and to help inform a prevention strategy in an ageing population, which starts from younger age groups to reduce disease into older age

    Simulating the Influence of Injection Timing, Premixed Ratio, and Inlet Temperature on Natural Gas / Diesel Dual-Fuel HCCI Combustion in a Diesel Engine

    Get PDF
    YesDual-fuel HCCI engines allow a relatively small quantity of diesel fuel to be used to ignite a variety of fuels such as natural gas or methane in HCCI mode. The gaseous fuel is mixed with the incoming air, and diesel fuel is sprayed into the cylinder by direct injection. Mathematical modelling is used to investigate the effects of parameters such as premixed ratio (fuel ratio) and pilot fuel injection timing on combustion of a dual-fuel HCCI engines. A CFD package is used with AVL FIRE software to simulate dual-fuel HCCI combustion in detail. The results establish a suitable range of premixed ratio and liquid fuel injection timing for low levels of NOx, CO and HC emissions along with a reliable and efficient combustion. Dual-fuel HCCI mode can increase NOx emission with lower premixed ratios in comparison to normal HCCI engines, but it is shown that the NOx emission reduces above a certain level of the premixed ratio. Due to the requirement of homogenous mixing of liquid fuel with air, the liquid fuel injection is earlier than for diesel engines. It is shown that, with careful control of parameters, dual-fuel HCCI engines have lower emissions in comparison with conventional engines

    Effect of temperature and salinity stress on growth and lipid composition of Shewanella gelidimarina

    Get PDF
    The maximum growth temperature, the optimal growth temperature, and the estimated normal physiological range for growth of Shewanella gelidimarina are functions of water activity (a(w)), which can be manipulated by changing the concentration of sodium chloride. The growth temperatures at the boundaries of the normal physiological range for growth were characterized by increased variability in fatty acid composition. Under hyper- and hypoosmotic stress conditions at an a(w) of 0.993 (1.0% [wt/vol] NaCl) and at an a(w) of 0.977 (4.0% [wt/vol] NaCl) the proportion of certain fatty acids (monounsaturated and branched-chain fatty acids) was highly regulated and was inversely related to the growth rate over the entire temperature range. The physical states of lipids extracted from samples grown at stressful a(w) values at the boundaries of the normal physiological range exhibited no abrupt gel-liquid phase transitions when the lipids were analyzed as liposomes. Lipid packing and adaptational fatty acid composition responses are clearly influenced by differences in the temperature-salinity regime, which are reflected in overall cell function characteristics, such as the growth rate and the normal physiological range for growth.Instituto de Investigaciones Bioquímicas de La Plat

    Thermoluminescence of zircon: a kinetic model

    Get PDF
    The mineral zircon, ZrSiO4, belongs to a class of promising materials for geochronometry by means of thermoluminescence (TL) dating. The development of a reliable and reproducible method for TL dating with zircon requires detailed knowledge of the processes taking place during exposure to ionizing radiation, long-term storage, annealing at moderate temperatures and heating at a constant rate (TL measurements). To understand these processes one needs a kinetic model of TL. This paper is devoted to the construction of such amodel. The goal is to study the qualitative behaviour of the system and to determine the parameters and processes controlling TL phenomena of zircon. The model considers the following processes: (i) Filling of electron and hole traps at the excitation stage as a function of the dose rate and the dose for both (low dose rate) natural and (high dose rate) laboratory irradiation. (ii) Time dependence of TL fading in samples irradiated under laboratory conditions. (iii) Short time annealing at a given temperature. (iv) Heating of the irradiated sample to simulate TL experiments both after laboratory and natural irradiation. The input parameters of the model, such as the types and concentrations of the TL centres and the energy distributions of the hole and electron traps, were obtained by analysing the experimental data on fading of the TL-emission spectra of samples from different geological locations. Electron paramagnetic resonance (EPR) data were used to establish the nature of the TL centres. Glow curves and 3D TL emission spectra are simulated and compared with the experimental data on time-dependent TL fading. The saturation and annealing behaviour of filled trap concentrations has been considered in the framework of the proposed kinetic model and comparedwith the EPR data associated with the rare-earth ions Tb3+ and Dy3+, which play a crucial role as hole traps and recombination centres. Inaddition, the behaviour of some of the SiOmn− centres has been compared with simulation results.

    What’s really damaging the Reef?: Tracing the origin and fate of the ecologically detrimental sediment and associated bioavailable nutrients

    Get PDF
    This report addresses six key systematic questions to help inform the debate on the influence of anthropogenic sediment and associated particulate nutrients delivered to the Great Barrier Reef (GBR) lagoon. They are: 1. What is the influence of the newly-delivered sediment (i.e. from flood plumes) on turbidity regimes at coral reef and seagrass locations of the inshore GBR? 2. What is the contribution of the anthropogenic component of this sediment on turbidity regimes? 3. What are the characteristics of the suspended particulate matter (and associated particulate nutrients) that influence light and turbidity regimes and how do these change over the estuarine mixing gradient of flood plumes? 4. How does the particulate organic component of the suspended particulate matter and associated microbial community composition change from the catchment to reef? 5. How bioavailable is the suspended particulate matter along the estuarine mixing gradient 6. Where does the sediment (and associated particulate nutrients) that influence light and turbidity regimes in the GBR come from in the Burdekin catchment so that management efforts can be prioritised? This final project report is divided into eight separate stand-alone research chapters which collectively address these six key questions

    Quantitative microbiology: a basis for food safety.

    Get PDF
    Because microorganisms are easily dispersed, display physiologic diversity, and tolerate extreme conditions, they are ubiquitous and may contaminate and grow in many food products. The behavior of microbial populations in foods (growth, survival, or death) is determined by the properties of the food (e.g., water activity and pH) and the storage conditions (e.g., temperature, relative humidity, and atmosphere). The effect of these properties can be predicted by mathematical models derived from quantitative studies on microbial populations. Temperature abuse is a major factor contributing to foodborne disease; monitoring temperature history during food processing, distribution, and storage is a simple, effective means to reduce the incidence of food poisoning. Interpretation of temperature profiles by computer programs based on predictive models allows informed decisions on the shelf life and safety of foods. In- or on-package temperature indicators require further development to accurately predict microbial behavior. We suggest a basis for a "universal" temperature indicator. This article emphasizes the need to combine kinetic and probability approaches to modeling and suggests a method to define the bacterial growth/no growth interface. Advances in controlling foodborne pathogens depend on understanding the pathogens' physiologic responses to growth constraints, including constraints conferring increased survival capacity

    Use of mixed methods designs in substance research: a methodological necessity in Nigeria

    Get PDF
    The utility of mixed methods (qualitative and quantitative) is becoming increasingly accepted in health sciences, but substance studies are yet to substantially benefit from such utilities. While there is a growing number of mixed methods alcohol articles concerning developed countries, developing nations are yet to embrace this method. In the Nigerian context, the importance of mixed methods research is yet to be acknowledged. This article therefore, draws on alcohol studies to argue that mixed methods designs will better equip scholars to understand, explore, describe and explain why alcohol consumption and its related problems are increasing in Nigeria. It argues that as motives for consuming alcohol in contemporary Nigeria are multiple, complex and evolving, mixed method approaches that provide multiple pathways for proffering solutions to problems should be embraced

    Effect of temperature and salinity stress on growth and lipid composition of Shewanella gelidimarina

    Get PDF
    The maximum growth temperature, the optimal growth temperature, and the estimated normal physiological range for growth of Shewanella gelidimarina are functions of water activity (a(w)), which can be manipulated by changing the concentration of sodium chloride. The growth temperatures at the boundaries of the normal physiological range for growth were characterized by increased variability in fatty acid composition. Under hyper- and hypoosmotic stress conditions at an a(w) of 0.993 (1.0% [wt/vol] NaCl) and at an a(w) of 0.977 (4.0% [wt/vol] NaCl) the proportion of certain fatty acids (monounsaturated and branched-chain fatty acids) was highly regulated and was inversely related to the growth rate over the entire temperature range. The physical states of lipids extracted from samples grown at stressful a(w) values at the boundaries of the normal physiological range exhibited no abrupt gel-liquid phase transitions when the lipids were analyzed as liposomes. Lipid packing and adaptational fatty acid composition responses are clearly influenced by differences in the temperature-salinity regime, which are reflected in overall cell function characteristics, such as the growth rate and the normal physiological range for growth.Instituto de Investigaciones Bioquímicas de La Plat

    Sediment tracing from the catchment to reef 2016 to 2018: Flood plume, marine sediment trap and logger data time series

    Get PDF
    The sediment dynamics at marine sites in the inshore GBRL region likely fall into three separate categories including sites where: 1. input of new terrigenous sediments have by far the greatest influence on sediment exposure and subsequent resuspension (e.g. Dunk Island, Orpheus Island, Havannah Island, Cleveland Bay?); 2. input of new terrigenous sediments are at least equivalent to resuspension events which likely increases upon larger river discharge events (e.g. Cleveland Bay?, Orchard Rocks). 3. input of new terrigenous sediments are less than or equal to common resuspension events (e.g. Middle Reef, Geoffrey Bay). This provides some of the first empirical data to support the findings of the satellite photic depth modelling of Fabricius et al. (2014, 2016) where the delivery of new terrigenous sediment considerably influences water clarity on the inshore Great Barrier Reef
    corecore