81 research outputs found

    KNOWLEDGE MANAGEMENT FOR MAINTENANCE ACTIVITIES IN THE MANUFACTURING SECTOR

    Get PDF
    Maintenance is an indispensable part of the business process and plays an important role in an organisation’s success and survival. The main purpose of maintenance is to ensure equipment functions at its original optimal level. Thus, the knowledge and skills of operators are crucial and in demand. This paper presents a knowledge management of maintenance activities transfer method. Knowledge management is a process that a company cannot avoid, because it is a step in providing the necessary information for business performance measurements. Based on the example of a knowledge management system for a consultant company, we propose a knowledge repository or warehouse for maintenance activities that consists of four elements: best practice, databases, discussion forums and assessment tools. Each element has its own role and contribution towards better maintenance activities. Therefore, knowledge management has a deep relationship with performance evaluation or measurement

    Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source

    Get PDF
    We report a broadband-gain superluminescent diode (SLD) based on self-assembled InAs quantum dots (QDs) for application in a high-resolution optical coherence tomography (OCT) light source. Four InAs QD layers, with sequentially shifted emission wavelengths achieved by varying the thickness of the In0.2Ga0.8As strain-reducing capping layers, were embedded in a conventional p-n heterojunction comprising GaAs and AlGaAs layers. A ridge-type waveguide with segmented contacts was formed on the grown wafer, and an as-cleaved 4-mm-long chip (QD-SLD) was prepared. The segmented contacts were effective in applying a high injection current density to the QDs and obtaining emission from excited states of the QDs, resulting in an extension of the bandwidth of the electroluminescence spectrum. In addition, gain spectra deduced with the segmented contacts indicated a broadband smooth positive gain region spanning 160 nm. Furthermore, OCT imaging with the fabricated QD-SLD was performed, and OCT images with an axial resolution of ∼4 μm in air were obtained. These results demonstrate the effectiveness of the QD-SLD with segmented contacts as a high-resolution OCT light source

    Development of a broadband superluminescent diode based on self-assembled InAs quantum dots and demonstration of high-axial-resolution optical coherence tomography imaging

    Get PDF
    We developed a near-infrared (NIR) superluminescent diode (SLD) based on self-assembled InAs quantum dots (QDs) and demonstrated high-axial-resolution optical coherence tomography (OCT) imaging using this QD-based SLD (QD-SLD). The QD-SLD utilized InAs QDs with controlled emission wavelengths as a NIR broadband light emitter, and a tilted waveguide with segmented electrodes was prepared for edge-emitting broadband electroluminescence (EL) spanning approximately 1–1.3 μm. The bandwidth of the EL spectrum was increased up to 144 nm at a temperature of 25 °C controlled using a thermoelectric cooler. The inverse Fourier transform of the EL spectrum predicted a minimum resolution of 3.6 μm in air. The QD-SLD was subsequently introduced into a spectral-domain (SD)-OCT setup, and SD-OCT imaging was performed for industrial and biological test samples. The OCT images obtained using the QD-SLD showed an axial resolution of ~4 μm, which was almost the same as that predicted from the spectrum. This axial resolution is less than the typical size of a single biological cell (~5 μm), and the practical demonstration of high-axial-resolution OCT imaging shows the application of QD-SLDs as a compact OCT light source, which enables the development of a portable OCT system

    Integration of Emission-wavelength-controlled InAs Quantum Dots for Ultrabroadband Near-infrared Light Source

    Get PDF
    Near-infrared (NIR) light sources are widely utilized in biological and medical imaging systems owing to their long penetration depth in living tissues. In a recently developed biomedical non-invasive cross-sectional imaging system, called optical coherence tomography (OCT), a broadband spectrum is also required, because OCT is based on low coherence interferometry. To meet these operational requirements, we have developed a NIR broadband light source by integrating self-assembled InAs quantum dots (QDs) grown on a GaAs substrate (InAs/GaAs QDs) with different emission wavelengths. In this review, we introduce the developed light sources and QD growth techniques that are used to control the emission wavelength for broadband emission spectra with center wavelengths of 1.05 and 1.3 μm. Although the strain-induced Stranski-Krastanov (S-K) mode-grown InAs/GaAs QDs normally emit light at a wavelength of around 1.2 μm, the central emission wavelength can be controlled to be between 0.9–1.4 μm by the use of an In-flush technique, the insertion of a strain-reducing layer (SRL) and bi-layer QD growth techniques. These techniques are useful for applying InAs/GaAs QDs as NIR broadband light sources and are especially suitable for our proposed spectral-shape-controllable broadband NIR light source. The potential of this light source for improving the performance of OCT systems is discussed

    Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley-derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The trichothecene mycotoxin deoxynivalenol (DON) may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation) when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm) in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-<it>O-</it>acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON), and may reduce its toxicity in plants and animals.</p> <p>Results</p> <p>Two <it>Fusarium </it>trichothecene 3-<it>O-</it>acetyltransferases (FgTRI101 and FfTRI201) were cloned and expressed in yeast (<it>Saccharomyces cerevisiae</it>) during a series of small-scale ethanol fermentations using barley (<it>Hordeum vulgare</it>). DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red<sup>®</sup>, which also consumed galactose when present in the mash.</p> <p>Conclusions</p> <p>This study demonstrates the potential of using yeast expressing a trichothecene 3-<it>O</it>-acetyltransferase to modify DON during commercial fuel ethanol fermentation.</p

    Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives

    Get PDF
    Deoxynivalenol (DON) is the major mycotoxin produced by Fusarium fungi in grains. Food and feed contaminated with DON pose a health risk to humans and livestock. The risk can be reduced by enzymatic detoxification. Complete mineralization of DON by microbial cultures has rarely been observed and the activities turned out to be unstable. The detoxification of DON by reactions targeting its epoxide group or hydroxyl on carbon 3 is more feasible. Microbial strains that de-epoxidize DON under anaerobic conditions have been isolated from animal digestive system. Feed additives claimed to de-epoxidize trichothecenes enzymatically are on the market but their efficacy has been disputed. A new detoxification pathway leading to 3-oxo-DON and 3-epi-DON was discovered in taxonomically unrelated soil bacteria from three continents; the enzymes involved remain to be identified. Arabidopsis, tobacco, wheat, barley, and rice were engineered to acetylate DON on carbon 3. In wheat expressing DON acetylation activity, the increase in resistance against Fusarium head blight was only moderate. The Tri101 gene from Fusarium sporotrichioides was used; Fusarium graminearum enzyme which possesses higher activity towards DON would presumably be a better choice. Glycosylation of trichothecenes occurs in plants, contributing to the resistance of wheat to F. graminearum infection. Marker-assisted selection based on the trichothecene-3-O-glucosyltransferase gene can be used in breeding for resistance. Fungal acetyltransferases and plant glucosyltransferases targeting carbon 3 of trichothecenes remain promising candidates for engineering resistance against Fusarium head blight. Bacterial enzymes catalyzing oxidation, epimerization, and less likely de-epoxidation of DON may extend this list in future

    Gastric cancer screening by combined assay for serum anti-Helicobacter pylori IgG antibody and serum pepsinogen levels — “ABC method”

    Get PDF
    The current status of screening for gastric cancer-risk (gastritis A, B, C, D) method using combined assay for serum anti-Helicobacter pylori (Hp) IgG antibody and serum pepsinogen (PG) levels, “ABC method”, was reviewed and the latest results of our ongoing trial are reported. It was performed using the following strategy: Subjects were classified into 1 of 4 risk groups based on the results of the two serologic tests, anti-Hp IgG antibody titers and the PG I and II levels: Group A [Hp(−)PG(−)], infection-free subjects; Group B [Hp(+)PG(−)], chronic atrophic gastritis (CAG) free or mild; Group C [Hp(+)PG(+)], CAG; Group D [Hp(−)PG(+)]), severe CAG with extensive intestinal metaplasia. Continuous endoscopic follow-up examinations are required to detect early stages of gastric cancer. Asymptomatic Group A, which accounts for 50–80% of all the subjects may be excluded from the secondary endoscopic examination, from the viewpoint of efficiency. Hp-infected subjects should be administered eradication treatment aimed at the prevention of gastric cancer

    Knowledge Management for Maintenance Activities in the Manufacturing Sector

    Get PDF
    Maintenance is an indispensable part of the business process and plays an important role in an organisation’s success and survival. The main purpose of maintenance is to ensure equipment functions at its original optimal level. Thus, the knowledge and skills of operators are crucial and in demand. This paper presents a knowledge management of maintenance activities transfer method. Knowledge management is a process that a company cannot avoid, because it is a step in providing the necessary information for business performance measurements. Based on the example of a knowledge management system for a consultant company, we propose a knowledge repository or warehouse for maintenance activities that consists of four elements: best practice, databases, discussion forums and assessment tools. Each element has its own role and contribution towards better maintenance activities. Therefore, knowledge management has a deep relationship with performance evaluation or measurement
    corecore