9 research outputs found

    ML-based Real-Time Control at the Edge: An Approach Using hls4ml

    Full text link
    This study focuses on implementing a real-time control system for a particle accelerator facility that performs high energy physics experiments. A critical operating parameter in this facility is beam loss, which is the fraction of particles deviating from the accelerated proton beam into a cascade of secondary particles. Accelerators employ a large number of sensors to monitor beam loss. The data from these sensors is monitored by human operators who predict the relative contribution of different sub-systems to the beam loss. Using this information, they engage control interventions. In this paper, we present a controller to track this phenomenon in real-time using edge-Machine Learning (ML) and support control with low latency and high accuracy. We implemented this system on an Intel Arria 10 SoC. Optimizations at the algorithm, high-level synthesis, and interface levels to improve latency and resource usage are presented. Our design implements a neural network, which can predict the main source of beam loss (between two possible causes) at speeds up to 575 frames per second (fps) (average latency of 1.74 ms). The practical deployed system is required to operate at 320 fps, with a 3ms latency requirement, which has been met by our design successfully

    Applications and Techniques for Fast Machine Learning in Science

    Get PDF
    In this community review report, we discuss applications and techniques for fast machine learning (ML) in science - the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs

    Applications and Techniques for Fast Machine Learning in Science

    No full text
    In this community review report, we discuss applications and techniques for fast machine learning (ML) in science - the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs

    Applications and Techniques for Fast Machine Learning in Science

    No full text
    In this community review report, we discuss applications and techniques for fast machine learning (ML) in science—the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs
    corecore