42 research outputs found

    Monomorphic Ventricular Arrhythmias in Athletes.

    Get PDF
    Ventricular arrhythmias are challenging to manage in athletes with concern for an elevated risk of sudden cardiac death (SCD) during sports competition. Monomorphic ventricular arrhythmias (MMVA), while often benign in athletes with a structurally normal heart, are also associated with a unique subset of idiopathic and malignant substrates that must be clearly defined. A comprehensive evaluation for structural and/or electrical heart disease is required in order to exclude cardiac conditions that increase risk of SCD with exercise, such as hypertrophic cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. Unique issues for physicians who manage this population include navigating athletes through the decision of whether they can safely continue their chosen sport. In the absence of structural heart disease, therapies such as radiofrequency catheter ablation are very effective for certain arrhythmias and may allow for return to competitive sports participation. In this comprehensive review, we summarise the recommendations for evaluating and managing athletes with MMVA

    Human Developmental Chondrogenesis as a Basis for Engineering Chondrocytes from Pluripotent Stem Cells

    Get PDF
    Joint injury and osteoarthritis affect millions of people worldwide, but attempts to generate articular cartilage using adult stem/progenitor cells have been unsuccessful. We hypothesized that recapitulation of the human developmental chondrogenic program using pluripotent stem cells (PSCs) may represent a superior approach for cartilage restoration. Using laser-capture microdissection followed by microarray analysis, we first defined a surface phenotype (CD166(low/neg)CD146(low/neg)CD73(+)CD44(low)BMPR1B(+)) distinguishing the earliest cartilage committed cells (prechondrocytes) at 5-6 weeks of development. Functional studies confirmed these cells are chondrocyte progenitors. From 12 weeks, only the superficial layers of articular cartilage were enriched in cells with this progenitor phenotype. Isolation of cells with a similar immunophenotype from differentiating human PSCs revealed a population of CD166(low/neg)BMPR1B(+) putative cartilage-committed progenitors. Taken as a whole, these data define a developmental approach for the generation of highly purified functional human chondrocytes from PSCs that could enable substantial progress in cartilage tissue engineering.Fil: Wu, Ling. University of California at Los Angeles; Estados UnidosFil: Bluguermann, Carolina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Laboratorio de Biología del Desarrollo Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of California at Los Angeles; Estados UnidosFil: Kyupelyan, Levon. University of California at Los Angeles; Estados UnidosFil: Latour, Brooke. University of California at Los Angeles; Estados UnidosFil: Gonzalez, Stephanie. University of California at Los Angeles; Estados UnidosFil: Shah, Saumya. University of California at Los Angeles; Estados UnidosFil: Galic, Zoran. University of California at Los Angeles; Estados UnidosFil: Ge, Sundi. University of California at Los Angeles; Estados UnidosFil: Zhu, Yuhua. University of California at Los Angeles; Estados UnidosFil: Petrigliano, Frank A.. University of California at Los Angeles; Estados UnidosFil: Nsair, Ali. University of California at Los Angeles; Estados UnidosFil: Miriuka, Santiago Gabriel. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Laboratorio de Biología del Desarrollo Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Li, Xinmin. University of California at Los Angeles; Estados UnidosFil: Lyons, Karen M.. University of California at Los Angeles; Estados UnidosFil: Crooks, Gay M.. University of California at Los Angeles; Estados UnidosFil: McAllister, David R.. University of California at Los Angeles; Estados UnidosFil: Van Handel, Ben. Novogenix Laboratories; Estados UnidosFil: Adams, John S.. University of California at Los Angeles; Estados UnidosFil: Evseenko, Denis. University of California at Los Angeles; Estados Unido

    Perceived barriers to effective use of telehealth in managing the care of patients with cardiovascular diseases: a qualitative study exploring healthcare professionals’ views in Jordan

    No full text
    Abstract Background The use of telehealth in the management of care and care delivery has been increasing significantly during the COVID-19 pandemic. Telehealth is an emerging technology used to manage care for patients with cardiovascular diseases (CVDs) in Jordan. However, implementing this approach in Jordan faces many challenges that need to be explored to identify practical solutions. Purpose To explore the perceived challenges and barriers to using telehealth in managing acute and chronic CVDs among healthcare professionals. Methods A qualitative, exploratory study was conducted by interviewing 24 health professionals at two hospitals in different clinical areas in Jordan. Results Several barriers were reported by participants that affected the utilization of telehealth services. The barriers were categorized into the following four themes: Drawbacks related to patients, Health providers’ concerns, Procedural faults, and telehealth To complement the service only. Conclusions The study suggests that telehealth can be instrumental in supporting care management for patients with CVD. It means that understanding the advantages and barriers to implementing telehealth by the healthcare providers in Jordan can improve many aspects of the healthcare services for patients with CVD within the healthcare settings in Jordan

    Electrical Homogenization of Ventricular Scar by Application of Collagenase

    No full text
    BackgroundRadiofrequency ablation for ventricular tachycardia is an established therapy. Use of chemical agents for scar homogenization represents an alternative approach. The purpose of this study was to characterize the efficacy of collagenase (CLG) application on epicardial ventricular scar homogenization.Methods and resultsMyocardial infarcts were created in Yorkshire pigs (n=6) by intracoronary microsphere injection. After 46.6±4.3 days, CLG type 2, type 4, and purified CLG were applied in vitro (n=1) to myocardial tissue blocks containing normal myocardium, border zone, and dense scar. Histopathologic studies were performed to identify the optimal CLG subtype. In vivo high-density electroanatomic mapping of the epicardium was also performed, and border zone and dense scar surface area and late potentials were quantified before and after CLG-4 application (n=5). Of the CLG subtypes tested in vitro, CLG-4 provided the best scar modification and least damage to normal myocardium. During in vivo testing, CLG-4 application decreased border zone area (21.3±14.3 to 17.1±11.1 mm(2), P=0.043) and increased dense scar area (9.1±10.3 to 22.0±20.6 mm(2), P=0.043). The total scar area before and after CLG application was 30.4±23.4 and 39.2±29.5 mm(2), respectively (P=0.08). Late potentials were reduced by CLG-4 application (28.8±21.8 to 13.8±13.1, P=0.043). During CLG-4 application (50.0±15.5 minutes), systolic blood pressure and heart rate were not significantly changed (68.0±7.7 versus 61.8±5.3 mmHg, P=0.08; 77.4±7.3 versus 78.8±6.0 beats per minute, P=0.50, respectively).ConclusionsVentricular epicardial scar homogenization by CLG-4 application is feasible and effective. This represents the first report on bioenzymatic ablation of arrhythmogenic tissue as an alternative strategy for lesion formation

    Electrical homogenization of ventricular scar by application of collagenase: a novel strategy for arrhythmia therapy.

    No full text
    BackgroundRadiofrequency ablation for ventricular tachycardia is an established therapy. Use of chemical agents for scar homogenization represents an alternative approach. The purpose of this study was to characterize the efficacy of collagenase (CLG) application on epicardial ventricular scar homogenization.Methods and resultsMyocardial infarcts were created in Yorkshire pigs (n=6) by intracoronary microsphere injection. After 46.6±4.3 days, CLG type 2, type 4, and purified CLG were applied in vitro (n=1) to myocardial tissue blocks containing normal myocardium, border zone, and dense scar. Histopathologic studies were performed to identify the optimal CLG subtype. In vivo high-density electroanatomic mapping of the epicardium was also performed, and border zone and dense scar surface area and late potentials were quantified before and after CLG-4 application (n=5). Of the CLG subtypes tested in vitro, CLG-4 provided the best scar modification and least damage to normal myocardium. During in vivo testing, CLG-4 application decreased border zone area (21.3±14.3 to 17.1±11.1 mm(2), P=0.043) and increased dense scar area (9.1±10.3 to 22.0±20.6 mm(2), P=0.043). The total scar area before and after CLG application was 30.4±23.4 and 39.2±29.5 mm(2), respectively (P=0.08). Late potentials were reduced by CLG-4 application (28.8±21.8 to 13.8±13.1, P=0.043). During CLG-4 application (50.0±15.5 minutes), systolic blood pressure and heart rate were not significantly changed (68.0±7.7 versus 61.8±5.3 mmHg, P=0.08; 77.4±7.3 versus 78.8±6.0 beats per minute, P=0.50, respectively).ConclusionsVentricular epicardial scar homogenization by CLG-4 application is feasible and effective. This represents the first report on bioenzymatic ablation of arrhythmogenic tissue as an alternative strategy for lesion formation
    corecore