686 research outputs found

    European oak decline phenomenon in relationto climatic changes

    Get PDF
    The complex phenomenon of decline in European oak is currently triggered by changing climatic conditions and their consequences like heavy rains, local floods and pest development. Especially, pathogens from Phytophthora genus profit from soil saturation with water. They are alien invasive species, which attack and severely damage fine roots. In drought conditions occurring in the subsequent year, many oaks die as they encounter problem with water uptake. Additionally, insect defoliators followed by oak mildew infections accelerate the level of tree mortality. Secondary insects, butt and root pathogens are usually the final cause of death of many oaks. More research is needed in the direction to determine (i) measurable factors (e.g. chlorophyll florescence) that can indicate that the process of tree decline has already started, (ii) the correlation between the root decay and the crown symptoms (scanners, software), (iii) which combination of stressors stimulate the best development of pathogens that lead to the high plant mortality and (iv) the difference between the mortality caused by the native and the invasive Phytophthora species.The research was performed within the frame of LIFE+ ENV/PL/000459 HESOFF ongoing European project ‘Evaluation of the health state of forests and an effect of phosphate treatments with the use of photovoltaic unmanned aerial vehicle (UAV)’.Przemysław Szmi

    An unknown trees die back caused by Pseudomonas species in Switzerland

    Get PDF
    A model for tree pathogen diagnosis – Prunus domestica L. has been studied against pathogenic bacteria. An orchard of 110 trees of P. domestica showed dying back symptoms in May 2009 and nineteen of these trees were eradicated and burnt for prophylaxis. No symptoms correlated with those caused by pathogens previously observed in stone fruit die back in Europe or elsewhere (Pseudomonas syringae pv syringae van Hall, Pseudomonas syringae pv morsprunorum Lazarowtz, Phytophthora sp., Diaporthe perniciosa Marchal., phytoplasma or viruses) were not found. Interestingly, cutting the trunk in transversal sections allowed the observation of stem heart necrosis which was mostly important at the grafting point. Isolations from necrotic stem heart allowed to identify anot yet described Pseudomonas species not related to P. syringae. The method described in the paper for isolation of pathogenic bacteria and their quick an reliable identification can be also applied for detection of pathogens in forest tree plantations.Przemysław Szmi

    The nerve cells of the neostriatum in the common shrew (Sorex araneus) and bank vole (Clethrionomys glareolus): a Golgi comparative study

    Get PDF
    The studies were carried out on 12 brains derived from adult representatives of two mammalian orders, Insectivora and Rodentia. The neostriatum was compared in the common shrew (Sorex araneus) and bank vole (Clethrionomys glareolus). Three main types of striatal neuron were distinguished in the common shrew and five types of neurons in the bank vole. The fifth type of bank vole neurons was additionally divided into two subtypes with respect to dendritic pattern

    The neuronal structure of the dorsal nucleus of the lateral geniculate body in the common shrew (Sorex araneus) and the bank vole (Clethrionomys glareolus): Golgi and Nissl studies

    Get PDF
    The topography and neuronal structure of the dorsal nucleus of the lateral geniculate body (GLd) of the common shrew and the bank vole are similar. The lateral geniculate body of both the species examined has a homogeneous structure and no observable cytoarchitectonic lamination. On the basis of the shape of the dendritic arbours as well as the pattern of dendritic arborisations the following two types of neurons were distinguished. Type I “bushy” neurons that have multipolar or round perikarya (common shrew perikarya 9–12 µm, bank vole perikarya 10–13 µm), with 4–6 short thick dendritic trunks that subdivide into many bush-like branches. The dendritic trunks are smooth, in contrast to the distal branches, which are covered with numerous spine-like protrusions of different lengths and forms. An axon emerges from the soma, sometimes very close to one of the primary dendrites. The type I neurons are typically projection cells that send their axons to the primary visual cortex. These neurons predominate in the GLd of both species. Type II neurons, which have an elongated soma with primary dendrites arising from opposite poles of the perikaryon (common shrew perikarya 8–10 µm, bank vole perikarya 9–11 µm). The dendritic arbours of these cells are less extensive and their dendrites have fewer spines than those of the type I neurons. Axons were seldom observed. The type II neurons are presumably interneurons and are definitely less numerous than the type I neurons

    A morphometric study of the preoptic area of the guinea pig

    Get PDF
    The aim of the study was to provide the topography and morphometric characteristics of the preoptic area (POA) of the guinea pig. The study was carried out on the brains of sexually mature guinea pigs of both sexes. A uniform procedure was followed in the study of the paraffin-embedded brain tissue blocks of males and females. The blocks were cut in the coronal plane into 50 mm sections and stained according to the Nissl method. The guinea pig POA consists of four parts: the medial preoptic area (MPA), lateral preoptic area (LPA), periventricular preoptic nucleus (PPN), and median preoptic nucleus (MPN). The topography and general structure of POA parts are similar in males and females. However, the PPNa cells of females are more intensely stained and are more densely packed than the PPNa cells of males. For morphometric analysis, the MPA and LPA as well as PPN and MPN were considered respectively as uniform structures, namely MPA-LPA and PPN-MPN. The statistical analysis showed that the volume of the PPN-MPN was larger in males than in females, whereas the MPA-LPA volume did not differ between the sexes. Moreover, the numerical density and the total number of neurons were statistically larger in males than in females in both the MPA-LPA and PPN-MPN. The parameters describing POA neurons were larger for MPA-LPA neurons in comparison with the PPN-MPN neurons. However, in this respect no sex differences were observed in both studied complexes. Folia Morphol 2010; 69, 1: 15-2

    The neuronal structure of the preoptic area in the mole and the rabbit: Golgi and Nissl studies

    Get PDF
    The present studies were carried out on the brains of the adult mole and rabbit. The preparations were made by means of the Golgi technique and the Nissl method. Two types of neurons were distinguished in the preoptic area (POA) of both species: bipolar and multipolar. The bipolar neurons have oval, fusiform or round perikarya and two dendritic trunks arising from the opposite poles of the cell body. The dendrites bifurcate once or twice. The dendritic branches have swellings, single spine-like and filiform processes. The multipolar neurons usually have triangular and quadrangular perikarya and from 3 to 5 dendritic trunks. The dendrites of the mole neurons branch sparsely, whereas the dendrites of the rabbit neurons display 2 or 3 divisions. On the dendritic branches varicosities and different protuberances were observed. The general morphology of the bipolar and multipolar neurons is similar in the mammals studied, although the neurons of the rabbit POA display a more complicated structure. Their dendritic branches show more divisions and possess more swellings and different processes than the dendrites of the neurons of the mole POA. Furthermore, of the multipolar neurons only the dendrites in POA of the rabbit were observed to have a rosary-like beaded appearance

    Distribution of cocaine- and amphetamine-regulated transcript in the hippocampal formation of the guinea pig and domestic pig

    Get PDF
    This study provides a detailed description concerning the distribution of cocaineand amphetamine-regulated transcript (CART) subunits - CART61-102 and rhCART28-116 - in the hippocampal formation (HF) of the guinea pig and domestic pig, focussing on the dentate gyrus (DG) and hippocampus proper (HP). Although in both studied species CART-immunoreactive (CART-IR) neuronal somata and processes were present generally in the same layers, some species-specific differences were still found. In the granular layer (GL) of both species, the ovalshaped neurons and some thick varicose fibres were encountered. In the guinea pig there was an immunoreactive “band of dots”, probably representing crosssectioned terminals within the DG molecular layer (MOL), whereas in the domestic pig, some varicose fibres were detected, thus suggesting a different orientation of, at least, some nerve terminals. Furthermore, some CART-positive cells and fibres were observed in the hilus (HL) of the guinea pig, whereas in the analogical part of the domestic pig only nerve terminals were labelled. In both species, in the pyramidal layer (PL) of the hippocampus proper, CART-IR triangular somata were observed in the CA3 sector, as well as some positive processes in MOL; however, a few immunoreactive perikarya were found only in the CA1 sector of the guinea pig. As regards the localization patterns of two isoforms of CART in the guinea pig, both peptide fragments were present simultaneously in each of the labelled neurons or fibres, whereas in the domestic pig three types of fibres may be distinguished within the area of the DG. In the hilus and MOL of the dentate gyrus, there were fibres expressing both isoforms of CART in their whole length (fibres of the first type). Fibres of the second type (in GL) coexpressed both peptides only on their short segments, and the last ones (in MOL) expressed solely rhCART28-116. These results indicate that the distribution of the two CART isoforms are specifically related, thus the relationship between the two CART isoforms may imply different metabolic profiles of CART-expressing neurons

    A morphometric comparative study of the lateral geniculate body in selected placental mammals: the common shrew, the bank vole, the rabbit, and the fox

    Get PDF
    The lateral geniculate body (LGN) was morphometrically examined and compared in representatives of four mammalian orders (Insectivora, Rodentia, Lagomorpha, and Carnivora). In each studied species, the lateral geniculate body was divided into two distinct parts: the dorsal nucleus (LGNd) and the ventral nucleus (LGNv). The lateral geniculate body of the common shrew and the bank vole are very similar in appearance and nuclear pattern. The dorsal and ventral nuclei of these two species also have the most similar statistical characteristics. The lateral geniculate body of the fox has the most complicated morphology and multilayered structure. A significant disproportion was observed between the sizes of both geniculate nuclei in the fox, where the dorsal nucleus definitely surpassed the ventral nucleus in terms of volume. With the exception of the fox, the neuronal density of the LGN nuclei was negatively correlated with the volumes of the LGN. The mean neuronal size of the LGNd and LGNv, which was the resultant of the length, width, area, and circumference of the soma, grew correlatively to the volumes of these nuclei. In all examined species, somas of the LGNd neurons are distinctly larger and have more similar shapes than the LGNv perikarya. In addition, the numerical density of neurons in the ventral nucleus is significantly higher than in the dorsal nucleus. All these morphometric parameters clearly differentiate the LGNd from the LGNv

    A Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell

    Full text link
    Biocatalytic buckypaper electrodes modified with pyrroloquinoline quinone (PQQ)‐dependent glucose dehydrogenase and bilirubin oxidase for glucose oxidation and oxygen reduction, respectively, were prepared for their use in a biofuel cell. A small (millimeter‐scale; 2×3×2 mm3) enzyme‐based biofuel cell was tested in a model glucose‐containing aqueous solution, in human serum, and as an implanted device in a living gray garden slug (Deroceras reticulatum), producing electrical power in the range of 2–10 μW (depending on the glucose source). A microelectronic temperature‐sensing device equipped with a rechargeable supercapacitor, internal data memory and wireless data downloading capability was specifically designed for activation by the biofuel cell. The power management circuit in the device allowed the optimized use of the power provided by the biofuel cell dependent on the sensor operation activity. The whole system (power‐producing biofuel cell and power‐consuming sensor) operated autonomously by extracting electrical energy from the available environmental source, as exemplified by extracting power from the glucose‐containing hemolymph (blood substituting biofluid) in the slug to power the complete temperature sensor system and read out data wirelessly. Other sensor systems operating autonomously in remote locations based on the concept illustrated here are envisaged for monitoring different environmental conditions or can be specially designed for homeland security applications, particularly in detecting bioterrorism threats.Sluggish sensor? A microelectronic sensor device was powered by an enzyme biofuel cell implanted in a slug to operate autonomously.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152860/1/cphc201900700_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152860/2/cphc201900700.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152860/3/cphc201900700-sup-0001-misc_information.pd
    corecore