90 research outputs found

    The high partial wave phenomenon of spin changing atomic transitions

    Get PDF
    The collisional transition between two highly excited atomic states with different spin is investigated theoretically. Taking helium-like n1S − n3P as an example, it is found that the transition is driven in the highly ion-ized Fe ion purely by exchange, and the cross section becomes increasingly dominated by partial waves of high orbital angular momentum as the scattering energy increases. Whereas for the near-neutral Li ion the transition is dominated by channel coupling in low partial waves. Analytical bench-marks and numerical methods are developed for the accurate calculation of the exchange integral at high angular momentum. It is shown how the partial wave and energy dependence of the collision strength for high n spin changing transitions in the highly ionized ion is related to the overlap of the extended atomic orbitals.</p

    UV and X-ray Spectral Lines of FeXXIII Ion for Plasma Diagnostics

    Full text link
    We have calculated X-ray and UV spectra of Be-like Fe (FeXXIII) ion in collisional-radiative model including all fine-structure transitions among the 2s^2, 2s2p, 2p^2, 2snl, and 2pnl levels where n=3 and 4, adopting data for the collision strengths by Zhang & Sampson (1992) and by Sampson, Goett, & Clark (1984). Some line intensity ratios can be used for the temperature diagnostics. We show 5 ratios in UV region and 9 ratios in X-ray region as a function of electron temperature and density at 0.3keV < T_e < 10keV and ne=11025cm3n_e = 1 - 10^{25} cm^{-3}. The effect of cascade in these line ratios and in the level population densities are discussed.Comment: LaTeX, 18 pages, 10 Postscript figures. To appear in Physica Script

    Improved Neutron-Capture Element Abundances in Planetary Nebulae

    Full text link
    Spectroscopy of planetary nebulae (PNe) provides the means to investigate s-process enrichments of neutron(n)-capture elements that cannot be detected in asymptotic giant branch (AGB) stars. However, accurate abundance determinations of these elements present a challenge. Corrections for unobserved ions can be large and uncertain, since in many PNe only one ion of a given n-capture element has been detected. Furthermore, the atomic data governing the ionization balance of these species are not well-determined, inhibiting the derivation of accurate ionization corrections. We present initial results of a program that addresses these challenges. Deep high resolution optical spectroscopy of ~20 PNe has been performed to detect emission lines from trans-iron species including Se, Br, Kr, Rb, and Xe. The optical spectral region provides access to multiple ions of these elements, which reduces the magnitude and importance of uncertainties in the ionization corrections. In addition, experimental and theoretical efforts are providing determinations of the photoionization cross-sections and recombination rate coefficients of Se, Kr, and Xe ions. These new atomic data will make it possible to derive robust ionization corrections for these elements. Together, our observational and atomic data results will enable n-capture element abundances to be determined with unprecedented accuracy in ionized nebulae.Comment: 6 pages, 6 figures, to appear in "The Origin of the Elements Heavier than Fe", Sep 25-27, 2008, Turin, Italy, PASA, eds. John C. Lattanzio and M. Lugar

    Prospective comparison of novel dark blood late gadolinium enhancement with conventional bright blood imaging for the detection of scar

    Get PDF
    BACKGROUND: Conventional bright blood late gadolinium enhancement (bright blood LGE) imaging is a routine cardiovascular magnetic resonance (CMR) technique offering excellent contrast between areas of LGE and normal myocardium. However, contrast between LGE and blood is frequently poor. Dark blood LGE (DB LGE) employs an inversion recovery T2 preparation to suppress the blood pool, thereby increasing the contrast between the endocardium and blood. The objective of this study is to compare the diagnostic utility of a novel DB phase sensitive inversion recovery (PSIR) LGE CMR sequence to standard bright blood PSIR LGE. METHODS: One hundred seventy-two patients referred for clinical CMR were scanned. A full left ventricle short axis stack was performed using both techniques, varying which was performed first in a 1:1 ratio. Two experienced observers analyzed all bright blood LGE and DB LGE stacks, which were randomized and anonymized. A scoring system was devised to quantify the presence and extent of gadolinium enhancement and the confidence with which the diagnosis could be made. RESULTS: A total of 2752 LV segments were analyzed. There was very good inter-observer correlation for quantifying LGE. DB LGE analysis found 41.5% more segments that exhibited hyperenhancement in comparison to bright blood LGE (248/2752 segments (9.0%) positive for LGE with bright blood; 351/2752 segments (12.8%) positive for LGE with DB; p < 0.05). DB LGE also allowed observers to be more confident when diagnosing LGE (bright blood LGE high confidence in 154/248 regions (62.1%); DB LGE in 275/324 (84.9%) regions (p < 0.05)). Eighteen patients with no bright blood LGE were found to have had DB LGE, 15 of whom had no known history of myocardial infarction. CONCLUSIONS: DB LGE significantly increases LGE detection compared to standard bright blood LGE. It also increases observer confidence, particularly for subendocardial LGE, which may have important clinical implications

    Energy Levels and Transition Probabilities for Nitrogen-Like Fe xx

    Get PDF
    Energies of the 700 lowest levels in Fexx have been obtained using the multiconfiguration Dirac-Fock method. Configuration interaction method on the basis set of transformed radial orbitals with variable parameters taking into account relativistic corrections in the Breit-Pauli approximation was used to crosscheck our presented results. Transition probabilities, oscillator and line strengths are presented for electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) transitions among these levels. The total radiative transition probabilities from each level are also provided. Results are compared with data compiled by NIST and with other theoretical work

    Improved Neutron-Capture Element Abundances in Planetary Nebulae

    Full text link
    Spectroscopy of planetary nebulae (PNe) provides the means to investigate s-process enrichments of neutron(n)-capture elements that cannot be detected in asymptotic giant branch (AGB) stars. However, accurate abundance determinations of these elements present a challenge. Corrections for unobserved ions can be large and uncertain, since in many PNe only one ion of a given n-capture element has been detected. Furthermore, the atomic data governing the ionization balance of these species are not well-determined, inhibiting the derivation of accurate ionization corrections. We present initial results of a program that addresses these challenges. Deep high resolution optical spectroscopy of ~20 PNe has been performed to detect emission lines from trans-iron species including Se, Br, Kr, Rb, and Xe. The optical spectral region provides access to multiple ions of these elements, which reduces the magnitude and importance of uncertainties in the ionization corrections. In addition, experimental and theoretical efforts are providing determinations of the photoionization cross-sections and recombination rate coefficients of Se, Kr, and Xe ions. These new atomic data will make it possible to derive robust ionization corrections for these elements. Together, our observational and atomic data results will enable n-capture element abundances to be determined with unprecedented accuracy in ionized nebulae.Comment: 6 pages, 6 figures, to appear in "The Origin of the Elements Heavier than Fe", Sep 25-27, 2008, Turin, Italy, PASA, eds. John C. Lattanzio and M. Lugar

    Native T1 and Extracellular Volume in Transthyretin Amyloidosis

    Get PDF
    OBJECTIVES: This study evaluated the prognostic potential of native myocardial T1 in cardiac transthyretin amyloidosis (ATTR) and compared native T1 with extracellular volume (ECV) in terms of diagnostic accuracy and prognosis. BACKGROUND: ATTR is an increasingly recognized cause of heart failure that has an overlapping clinical phenotype with hypertrophic cardiomyopathy (HCM). Native T1 mapping by cardiac magnetic resonance (CMR) is useful for diagnosis in cardiac amyloidosis but its prognostic potential has never been assessed. METHODS: A total of 134 patients with wild-type ATTR (ATTRwt) (122 men; age 76 ± 7 years), 81 patients with hereditary-type ATTR (ATTRm) (60 men; age 69 ± 11 years), 44 patients with HCM (32 men; age 51 ± 13 years), and 12 asymptomatic mutation carriers (4 men; age 47 ± 10 years) were studied. All subjects underwent CMR with T1 mapping and ECV measurement. ATTR patients also underwent99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid (99mTc-DPD) scintigraphy. RESULTS: Native T1 and ECV were elevated in ATTR compared with HCM (p < 0.001) and were both associated with a high diagnostic accuracy (area under the curve [AUC]: 0.87; 95% confidence interval [CI]: 0.82 to 0.91) for T1 and an AUC of 0.91 (95% CI: 0.87 to 0.94) for ECV. No significant difference in native T1 and ECV was found between ATTRwt and ATTRm, and ECV correlated well with99mTc-DPD scintigraphy. During follow-up of a mean of 32 ± 17 months, 55 ATTRwt and 40 ATTRm patients died. Native T1 and ECV predicted death (T1: hazard ratio [HR]: 1.225 for each 59-ms increase; 95% CI: 1.010 to 1.486; p < 0.05; ECV: HR: 1.155 for each 3% increase; 95% CI: 1.097 to 1.216; p < 0.001), but only ECV remained independently predictive after adjustment for age, N-terminal pro-B-type natriuretic peptide, left ventricular ejection fraction, E/E', left ventricular mass index, DPD grade, and late gadolinium enhancement. CONCLUSIONS: Native T1 mapping and ECV are good diagnostic techniques for cardiac ATTR that are associated with prognosis. Both parameters correlated with mortality, but only ECV remained independently predictive of prognosis, suggesting that it is a more robust marker in cardiac ATTR

    The MAGIC trial: a pragmatic, multicentre, parallel, noninferiority, randomised trial of melatonin versus midazolam in the premedication of anxious children attending for elective surgery under general anaesthesia

    Get PDF
    \ua9 2023 The Author(s)Background: Child anxiety before general anaesthesia and surgery is common. Midazolam is a commonly used premedication to address this. Melatonin is an alternative anxiolytic, however trials evaluating its efficacy in children have delivered conflicting results. Methods: This multicentre, double-blind randomised trial was performed in 20 UK NHS Trusts. A sample size of 624 was required to declare noninferiority of melatonin. Anxious children, awaiting day case elective surgery under general anaesthesia, were randomly assigned 1:1 to midazolam or melatonin premedication (0.5 mg kg−1, maximum 20 mg) 30 min before transfer to the operating room. The primary outcome was the modified Yale Preoperative Anxiety Scale-Short Form (mYPAS-SF). Secondary outcomes included safety. Results are presented as n (%) and adjusted mean differences with 95% confidence intervals. Results: The trial was stopped prematurely (n=110; 55 per group) because of recruitment futility. Participants had a median age of 7 (6–10) yr, and 57 (52%) were female. Intention-to-treat and per-protocol modified Yale Preoperative Anxiety Scale-Short Form analyses showed adjusted mean differences of 13.1 (3.7–22.4) and 12.9 (3.1–22.6), respectively, in favour of midazolam. The upper 95% confidence interval limits exceeded the predefined margin of 4.3 in both cases, whereas the lower 95% confidence interval excluded zero, indicating that melatonin was inferior to midazolam, with a difference considered to be clinically relevant. No serious adverse events were seen in either arm. Conclusion: Melatonin was less effective than midazolam at reducing preoperative anxiety in children, although the early termination of the trial increases the likelihood of bias. Clinical trial registration: ISRCTN registry: ISRCTN18296119

    The MAGIC trial: a pragmatic, multicentre, parallel, noninferiority, randomised trial of melatonin versus midazolam in the premedication of anxious children attending for elective surgery under general anaesthesia

    Get PDF
    BACKGROUND: Child anxiety before general anaesthesia and surgery is common. Midazolam is a commonly used premedication to address this. Melatonin is an alternative anxiolytic, however trials evaluating its efficacy in children have delivered conflicting results. METHODS: This multicentre, double-blind randomised trial was performed in 20 UK NHS Trusts. A sample size of 624 was required to declare noninferiority of melatonin. Anxious children, awaiting day case elective surgery under general anaesthesia, were randomly assigned 1:1 to midazolam or melatonin premedication (0.5 mg kg-1, maximum 20 mg) 30 min before transfer to the operating room. The primary outcome was the modified Yale Preoperative Anxiety Scale-Short Form (mYPAS-SF). Secondary outcomes included safety. Results are presented as n (%) and adjusted mean differences with 95% confidence intervals. RESULTS: The trial was stopped prematurely (n=110; 55 per group) because of recruitment futility. Participants had a median age of 7 (6-10) yr, and 57 (52%) were female. Intention-to-treat and per-protocol modified Yale Preoperative Anxiety Scale-Short Form analyses showed adjusted mean differences of 13.1 (3.7-22.4) and 12.9 (3.1-22.6), respectively, in favour of midazolam. The upper 95% confidence interval limits exceeded the predefined margin of 4.3 in both cases, whereas the lower 95% confidence interval excluded zero, indicating that melatonin was inferior to midazolam, with a difference considered to be clinically relevant. No serious adverse events were seen in either arm. CONCLUSION: Melatonin was less effective than midazolam at reducing preoperative anxiety in children, although the early termination of the trial increases the likelihood of bias. CLINICAL TRIAL REGISTRATION: ISRCTN registry: ISRCTN18296119
    corecore