2,848 research outputs found
Convergence and multiplicities for the Lempert function
Given a domain , the Lempert function is a
functional on the space Hol (\D,\Omega) of analytic disks with values in
, depending on a set of poles in . We generalize its definition
to the case where poles have multiplicities given by local indicators (in the
sense of Rashkovskii's work) to obtain a function which still dominates the
corresponding Green function, behaves relatively well under limits, and is
monotonic with respect to the indicators. In particular, this is an improvement
over the previous generalization used by the same authors to find an example of
a set of poles in the bidisk so that the (usual) Green and Lempert functions
differ.Comment: 24 pages; many typos corrected thanks to the referee of Arkiv for
Matemati
Jacobi Identity for Vertex Algebras in Higher Dimensions
Vertex algebras in higher dimensions provide an algebraic framework for
investigating axiomatic quantum field theory with global conformal invariance.
We develop further the theory of such vertex algebras by introducing formal
calculus techniques and investigating the notion of polylocal fields. We derive
a Jacobi identity which together with the vacuum axiom can be taken as an
equivalent definition of vertex algebra.Comment: 35 pages, references adde
Malaria elimination campaigns in the Lake Kariba region of Zambia: a spatial dynamical model
Background As more regions approach malaria elimination, understanding how
different interventions interact to reduce transmission becomes critical. The
Lake Kariba area of Southern Province, Zambia, is part of a multi-country
elimination effort and presents a particular challenge as it is an
interconnected region of variable transmission intensities.
Methods In 2012-13, six rounds of mass-screen-and-treat drug campaigns were
carried out in the Lake Kariba region. A spatial dynamical model of malaria
transmission in the Lake Kariba area, with transmission and climate modeled at
the village scale, was calibrated to the 2012-13 prevalence survey data, with
case management rates, insecticide-treated net usage, and drug campaign
coverage informed by surveillance. The model was used to simulate the effect of
various interventions implemented in 2014-22 on reducing regional transmission,
achieving elimination by 2022, and maintaining elimination through 2028.
Findings The model captured the spatio-temporal trends of decline and rebound
in malaria prevalence in 2012-13 at the village scale. Simulations predicted
that elimination required repeated mass drug administrations coupled with
simultaneous increase in net usage. Drug campaigns targeted only at high-burden
areas were as successful as campaigns covering the entire region.
Interpretation Elimination in the Lake Kariba region is possible through
coordinating mass drug campaigns with high-coverage vector control. Targeting
regional hotspots is a viable alternative to global campaigns when human
migration within an interconnected area is responsible for maintaining
transmission in low-burden areas
- …
