2,831 research outputs found

    Wonders of Technology-Teaching Physics to Non-Scientists

    Get PDF
    Wonders of Technology is a conceptual physics course developed for non—science majors. The approach taken here in the introduction of the physical concepts is to depict their role in today’s technology, specifically the technology familiar to the students, and also to emphasize the connection between technology, art, and culture from the historical perspective. Why this approach? The traditional method of teaching physics is perceived by many students as user-unfriendly — they think physics is difficult, abstract, and, in fact, of little or no relevance to everyday life. The course Wonders of Technology alleviates this perception by placing the students on familiar ground that provides a fertile environment for an easier assimilation of knowledge. By examining the technology students use on a daily basis to demonstrate how physics makes things work, students are motivated to seek understanding of the principles underlying their operation. The course was developed within the guidelines of the new general education requirements at Virginia Commonwealth University. This presentation highlights some of the highly successful features of the newly developed course, with emphasis on responses from the education majors who are enrolled in the course

    Teaching Physical Science Through Technology: Middle School VCU PHY 591

    Get PDF
    Teaching Physical Science through Technology is a new 3-credit laboratory-and-lecture based course designed to serve as an introduction to the teaching of physical science concepts at the middle school level. Physical science phenomena are presented through investigations of commonly known applications of technology and focus on the Virginia Science Standards of Learning for 6th Grade Science and the Physical Science courses. Topics include matter, gravity, mechanics, heat, optics, electricity and magnetism, and computers as seen in their roles in common devices. The development of the course includes assessment from six semesters, collaboration with other institutions including the Science Museum of Virginia, and an 800 page text written by Adam Niculescu

    Attitudes in Physics Education: An Alternative Approach to Teaching Physics to Non-Science College Students

    Get PDF
    In this article, we present an alternative way of teaching conceptual physics for non-science majors by depicting the role of physics in today\u27s technology. The goal of this approach is to increase in the minds of non-science students the acceptance of physics as a useful component in general education, and as a major tool in comprehending the present-day technological world experienced by students outside the classroom

    Direct observation of quark-hadron duality in the free neutron F-2 structure function

    Get PDF
    Using the recently published data from the BONuS(Barely Off-shell Nucleon Structure) experiment at Jefferson Lab, which utilized a spectator tagging technique to extract the inclusive electron-free neutron scattering cross section, we obtain the first direct observation of quark-hadron duality in the neutron F-2 structure function. The data are used to reconstruct the lowest few (N = 2, 4, and 6) moments of F-2 in the three prominent nucleon resonance regions, as well as the moments integrated over the entire resonance region. Comparison with moments computed from global parametrizations of parton distribution functions suggest that quark-hadron duality holds locally for the neutron in the second and third resonance regions down to Q(2) approximate to 1 GeV2, with violations possibly up to 20% observed in the first resonance region

    Psychiatric blood biomarkers: avoiding jumping to premature negative or positive conclusions

    Get PDF
    Blood biomarkers may provide a scientifically useful and clinically usable peripheral signal in psychiatry, as they have been doing for other fields of medicine. Jumping to premature conclusions, negative or positive, can create confusion in this field. Reproducibility is a hallmark of good science. We discuss some recent examples from this dynamic field, and show some new data in support of previously published biomarkers for suicidality (SAT1, MARCKS and SKA2). Methodological clarity and rigor in terms of biomarker discovery, validation and testing is needed. We propose a set of principles for what constitutes a good biomarker, similar in spirit to the Koch postulates used at the birth of the field of infectious diseases

    Towards precision medicine for pain: diagnostic biomarkers and repurposed drugs

    Get PDF
    We endeavored to identify objective blood biomarkers for pain, a subjective sensation with a biological basis, using a stepwise discovery, prioritization, validation, and testing in independent cohorts design. We studied psychiatric patients, a high risk group for co-morbid pain disorders and increased perception of pain. For discovery, we used a powerful within-subject longitudinal design. We were successful in identifying blood gene expression biomarkers that were predictive of pain state, and of future emergency department (ED) visits for pain, more so when personalized by gender and diagnosis. MFAP3, which had no prior evidence in the literature for involvement in pain, had the most robust empirical evidence from our discovery and validation steps, and was a strong predictor for pain in the independent cohorts, particularly in females and males with PTSD. Other biomarkers with best overall convergent functional evidence for involvement in pain were GNG7, CNTN1, LY9, CCDC144B, and GBP1. Some of the individual biomarkers identified are targets of existing drugs. Moreover, the biomarker gene expression signatures were used for bioinformatic drug repurposing analyses, yielding leads for possible new drug candidates such as SC-560 (an NSAID), and amoxapine (an antidepressant), as well as natural compounds such as pyridoxine (vitamin B6), cyanocobalamin (vitamin B12), and apigenin (a plant flavonoid). Our work may help mitigate the diagnostic and treatment dilemmas that have contributed to the current opioid epidemic

    Precision medicine for suicidality: from universality to subtypes and personalization

    Get PDF
    Suicide remains a clear, present and increasing public health problem, despite being a potentially preventable tragedy. Its incidence is particularly high in people with overt or un(der)diagnosed psychiatric disorders. Objective and precise identification of individuals at risk, ways of monitoring response to treatments and novel preventive therapeutics need to be discovered, employed and widely deployed. We sought to investigate whether blood gene expression biomarkers for suicide (that is, a ‘liquid biopsy’ approach) can be identified that are more universal in nature, working across psychiatric diagnoses and genders, using larger cohorts than in previous studies. Such markers may reflect and/or be a proxy for the core biology of suicide. We were successful in this endeavor, using a comprehensive stepwise approach, leading to a wealth of findings. Steps 1, 2 and 3 were discovery, prioritization and validation for tracking suicidality, resulting in a Top Dozen list of candidate biomarkers comprising the top biomarkers from each step, as well as a larger list of 148 candidate biomarkers that survived Bonferroni correction in the validation step. Step 4 was testing the Top Dozen list and Bonferroni biomarker list for predictive ability for suicidal ideation (SI) and for future hospitalizations for suicidality in independent cohorts, leading to the identification of completely novel predictive biomarkers (such as CLN5 and AK2), as well as reinforcement of ours and others previous findings in the field (such as SLC4A4 and SKA2). Additionally, we examined whether subtypes of suicidality can be identified based on mental state at the time of high SI and identified four potential subtypes: high anxiety, low mood, combined and non-affective (psychotic). Such subtypes may delineate groups of individuals that are more homogenous in terms of suicidality biology and behavior. We also studied a more personalized approach, by psychiatric diagnosis and gender, with a focus on bipolar males, the highest risk group. Such a personalized approach may be more sensitive to gender differences and to the impact of psychiatric co-morbidities and medications. We compared testing the universal biomarkers in everybody versus testing by subtypes versus personalized by gender and diagnosis, and show that the subtype and personalized approaches permit enhanced precision of predictions for different universal biomarkers. In particular, LHFP appears to be a strong predictor for suicidality in males with depression. We also directly examined whether biomarkers discovered using male bipolars only are better predictors in a male bipolar independent cohort than universal biomarkers and show evidence for a possible advantage of personalization. We identified completely novel biomarkers (such as SPTBN1 and C7orf73), and reinforced previously known biomarkers (such as PTEN and SAT1). For diagnostic ability testing purposes, we also examined as predictors phenotypic measures as apps (for suicide risk (CFI-S, Convergent Functional Information for Suicidality) and for anxiety and mood (SASS, Simplified Affective State Scale)) by themselves, as well as in combination with the top biomarkers (the combination being our a priori primary endpoint), to provide context and enhance precision of predictions. We obtained area under the curves of 90% for SI and 77% for future hospitalizations in independent cohorts. Step 5 was to look for mechanistic understanding, starting with examining evidence for the Top Dozen and Bonferroni biomarkers for involvement in other psychiatric and non-psychiatric disorders, as a mechanism for biological predisposition and vulnerability. The biomarkers we identified also provide a window towards understanding the biology of suicide, implicating biological pathways related to neurogenesis, programmed cell death and insulin signaling from the universal biomarkers, as well as mTOR signaling from the male bipolar biomarkers. In particular, HTR2A increase coupled with ARRB1 and GSK3B decreases in expression in suicidality may provide a synergistic mechanistical corrective target, as do SLC4A4 increase coupled with AHCYL1 and AHCYL2 decrease. Step 6 was to move beyond diagnostics and mechanistical risk assessment, towards providing a foundation for personalized therapeutics. Items scored positive in the CFI-S and subtypes identified by SASS in different individuals provide targets for personalized (psycho)therapy. Some individual biomarkers are targets of existing drugs used to treat mood disorders and suicidality (lithium, clozapine and omega-3 fatty acids), providing a means toward pharmacogenomics stratification of patients and monitoring of response to treatment. Such biomarkers merit evaluation in clinical trials. Bioinformatics drug repurposing analyses with the gene expression biosignatures of the Top Dozen and Bonferroni-validated universal biomarkers identified novel potential therapeutics for suicidality, such as ebselen (a lithium mimetic), piracetam (a nootropic), chlorogenic acid (a polyphenol) and metformin (an antidiabetic and possible longevity promoting drug). Finally, based on the totality of our data and of the evidence in the field to date, a convergent functional evidence score prioritizing biomarkers that have all around evidence (track suicidality, predict it, are reflective of biological predisposition and are potential drug targets) brought to the fore APOE and IL6 from among the universal biomarkers, suggesting an inflammatory/accelerated aging component that may be a targetable common denominator

    Locality of quark-hadron duality and deviations from quark counting rules above resonance region

    Full text link
    We show how deviations from the dimensional scaling laws for exclusive processes may be related to a breakdown in the locality of quark-hadron duality. The essential principles are illustrated in a pedagogic model of a composite system with two spinless charged constituents, for which a dual picture for the low-energy resonance phenomena and high-energy scaling behavior can be established. We introduce the concept of "restricted locality" of quark-hadron duality and show how this results in deviations from the pQCD quark counting rules above the resonance region. In particular it can be a possible source for oscillations about the smooth quark counting rule, as seen e.g. in the 90-degree differential cross sections for γp→π+n\gamma p\to \pi^+ n.Comment: The way to present Eqs. (2), (4), (7) are changed while physics contents and calculations are left intact; Additional explanations for the forward and large-angle duality are added; Three more references are included; Version to appear on Phys. Rev. Let

    Structural results on convexity relative to cost functions

    Full text link
    Mass transportation problems appear in various areas of mathematics, their solutions involving cost convex potentials. Fenchel duality also represents an important concept for a wide variety of optimization problems, both from the theoretical and the computational viewpoints. We drew a parallel to the classical theory of convex functions by investigating the cost convexity and its connections with the usual convexity. We give a generalization of Jensen's inequality for cost convex functions.Comment: 10 page
    • …
    corecore