2,746 research outputs found

    Tunable n-path notch filters for blocker suppression: modeling and verification

    Get PDF
    N-path switched-RC circuits can realize filters with very high linearity and compression point while they are tunable by a clock frequency. In this paper, both differential and single-ended N-path notch filters are modeled and analyzed. Closed-form equations provide design equations for the main filtering characteristics and nonidealities such as: harmonic mixing, switch resistance, mismatch and phase imbalance, clock rise and fall times, noise, and insertion loss. Both an eight-path single-ended and differential notch filter are implemented in 65-nm CMOS technology. The notch center frequency, which is determined by the switching frequency, is tunable from 0.1 to 1.2 GHz. In a 50- environment, the N-path filters provide power matching in the passband with an insertion loss of 1.4–2.8 dB. The rejection at the notch frequency is 21–24 dB,P1 db> + 2 dBm, and IIP3 > + 17 dBm

    Digital Detection of Oxide Breakdown and Life-Time Extension in Submicron CMOS Technology

    Get PDF
    An approach is introduced to extend the lifetime of high-voltage analog circuits in CMOS technologies based on redundancy, like that known for DRAMS. A large power transistor is segmented into N smaller ones in parallel. If a sub-transistor is broken, it is removed automatically from the compound transistor. The principleis demonstrated in an RF CMOS Power Amplifier (PA) in standard 1.2V 90nm CMOS

    Transversality of the logarithmic divergences in the Classical Finite Temperature SU(N) Self-Energy

    Get PDF
    We show that the logarithmic divergences that appear in the classical approximation of the finite temperature SU(N) self-energy are transverse. We use the Ward identities in linear gauges and the fact that the superficial degree of divergence d of a classical diagram only depends on the number of loops l via d=2-l. We comment on the relevance of this result to the construction of a low-energy effective theory beyond HTLs.Comment: 5 pages, 1 figure, REVTE

    A 400-to-900 MHz Receiver with Dual-domain Harmonic Rejection Exploiting Adaptive Interference Cancellation

    Get PDF
    Wideband direct-conversion harmonic-rejection (HR) receivers for software-defined radio aim to remove or relax the pre-mixer RF filters, which are inflexible, bulky and costly [1,2]. HR schemes derived from [3] are often used, but amplitude and phase mismatches limit HR to between 30 and 40dB [1,2]. A quick calculation shows that much more rejection is wanted: in order to bring harmonic responses down to the noise floor (e.g. −100dBm in 10MHz for 4dB NF), and cope with interferers between −40 and 0dBm, an HR of 60 to 100dB is needed. Also in terrestrial TV receivers and in applications like DVB-H with co-existence requirements with GSM/WLAN transmitters in a small telephone, high HR is needed

    A DC-coupled RF Amplifier in CMOS with DC-feedback

    Get PDF
    A CMOS multistage RF amplifier with DC coupling is presented. A complete optimisation of the various stages is done to maximize the RF gain for a given power budget. To decrease the effects of offsets and tolerances in high gain multistage amplifiers usually (lossy) AC coupling is used. The presented circuit employs DC coupling and DC control circuitry to avoid coupling-induced\ud losses. Compared to existing competing AC-coupled designs the presented one has much more gain at the same power consumption with a lower die area. For the 3-stage design vehicle, with Rsrc = 500Ω and Cout = 400fF, the maximal signal power gain at 4mA supply current is 33dB at 1.9GHz

    Digitally-Enhanced Software-Defined Radio Receiver Robust to Out-of-Band Interference

    Get PDF
    A software-defined radio (SDR) receiver with improved robustness to out-of-band interference (OBI) is presented. Two main challenges are identified for an OBI-robust SDR receiver: out-of-band nonlinearity and harmonic mixing. Voltage gain at RF is avoided, and instead realized at baseband in combination with low-pass filtering to mitigate blockers and improve out-of-band IIP3. Two alternative “iterative” harmonic-rejection (HR) techniques are presented to achieve high HR robust to mismatch: a) an analog two-stage polyphase HR concept, which enhances the HR to more than 60 dB; b) a digital adaptive interference cancelling (AIC) technique, which can suppress one dominating harmonic by at least 80 dB. An accurate multiphase clock generator is presented for a mismatch-robust HR. A proof-of-concept receiver is implemented in 65 nm CMOS. Measurements show 34 dB gain, 4 dB NF, and 3.5 dBm in-band IIP3 while the out-of-band IIP3 is + 16 dBm without fine tuning. The measured RF bandwidth is up to 6 GHz and the 8-phase LO works up to 0.9 GHz (master clock up to 7.2 GHz). At 0.8 GHz LO, the analog two-stage polyphase HR achieves a second to sixth order HR > dB over 40 chips, while the digital AIC technique achieves HR > 80 dB for the dominating harmonic. The total power consumption is 50 mA from a 1.2 V supply

    The Use of Electroacupuncture for Cervical Ripening in Pregnant Women

    Get PDF
    The purpose of this study was to compare cervical ripening outcomes, based on Bishop scoring methodology, of pregnant women receiving usual care treatment (UC) with those receiving electroacupuncture plus UC. A sample of 36 pregnant women completing their 39th week of gestation was randomized into one of the two groups. The women in the UC group continued to meet with their provider on a weekly basis until delivery. The women in the electroacupuncture plus usual care group met with their provider on a weekly basis and also received electroacupuncture treatments: three in the 39th gestational week and two in the 40th gestational week. Conceptual basis for the study was guided by and adapted from the Complementary and Alternative Medicine Model (Figure 1). An experimental research design was used for this pilot study with a sample size of 36 women; 18 in each group. The demographic data were analyzed using descriptive statistics. Means and standard deviations were calculated for the participant’s age, gestational age, parity, and Bishop score. Frequencies and percentages were calculated for ethnicity, use of induction methods, types of interventions and mode of delivery. A Mann-Whitney test was used to compare changes in the Bishop score and time in labor. Apgar scores below seven at 5 minutes were calculated using Chi Square methodology. Results from this study found that electroacupuncture plus UC positively influenced the timing of delivery (p = 0.051) and the method of delivery (94.4% vaginal delivery rate) compared to UC treatment alone (83.3% vaginal delivery rate). Electroacupuncture plus UC was not shown to be more effective for cervical ripening than UC treatment alone (p = .633); however, only 5.6% of participants in the lectroacupuncture plus UC group required induction with Cervidil® and Pitocin® compared to 22.2% of participants in the UC group. The use of electroacupuncture may be beneficial for cervical ripening, initiation of spontaneous labor, reduction of the time in active labor, and an increased potential for a vaginal birth

    Imagery Rescripting : The Impact of Conceptual and Perceptual Changes on Aversive Autobiographical Memories

    Get PDF
    BACKGROUND: Imagery rescripting (ImRs) is a process by which aversive autobiographical memories are rendered less unpleasant or emotional. ImRs is thought only to be effective if a change in the meaning-relevant (semantic) content of the mental image is produced, according to a cognitive hypothesis of ImRs. We propose an additional hypothesis: that ImRs can also be effective by the manipulation of perceptual features of the memory, without explicitly targeting meaning-relevant content. METHODS: In two experiments using a within-subjects design (both N = 48, community samples), both Conceptual-ImRs-focusing on changing meaning-relevant content-and Perceptual-ImRs-focusing on changing perceptual features-were compared to Recall-only of aversive autobiographical image-based memories. An active control condition, Recall + Attentional Breathing (Recall+AB) was added in the first experiment. In the second experiment, a Positive-ImRs condition was added-changing the aversive image into a positive image that was unrelated to the aversive autobiographical memory. Effects on the aversive memory's unpleasantness, vividness and emotionality were investigated. RESULTS: In Experiment 1, compared to Recall-only, both Conceptual-ImRs and Perceptual-ImRs led to greater decreases in unpleasantness, and Perceptual-ImRs led to greater decreases in emotionality of memories. In Experiment 2, the effects on unpleasantness were not replicated, and both Conceptual-ImRs and Perceptual-ImRs led to greater decreases in emotionality, compared to Recall-only, as did Positive-ImRs. There were no effects on vividness, and the ImRs conditions did not differ significantly from Recall+AB. CONCLUSIONS: Results suggest that, in addition to traditional forms of ImRs, targeting the meaning-relevant content of an image during ImRs, relatively simple techniques focusing on perceptual aspects or positive imagery might also yield benefits. Findings require replication and extension to clinical samples

    A general weak nonlinearity model for LNAs

    Get PDF
    This paper presents a general weak nonlinearity model that can be used to model, analyze and describe the distortion behavior of various low noise amplifier topologies in both narrowband and wideband applications. Represented by compact closed-form expressions our model can be easily utilized by both circuit designers and LNA design automation algorithms.\ud Simulations for three LNA topologies at different operating conditions show that the model describes IM components with an error lower than 0.1% and a one order of magnitude faster response time. The model also indicates that for narrowband IM2@w1-w2 all the nonlinear capacitances can be neglected while for narrowband IM3 the nonlinear capacitances at the drainterminal can be neglected

    Asymmetric Chern-Simons number diffusion from CP-violation

    Get PDF
    We study Chern-Simons number diffusion in a SU(2)-Higgs model with CP-odd dimension-eight operators. We find that the thermal average of the magnitude of the velocity of the Chern-Simons number depends on the direction of the velocity. This implies that the distribution function of the Chern-Simons number will develop an asymmetry. It is argued that this asymmetry manifests itself through a linear growth of the expectation value of the third power of the Chern-Simons number. This linear behavior of the third power of a coordinate of a periodic direction is verified by a numerical solution of a one-dimensional Langevin equation. Further, we make some general remarks on thermal averages and on the possibility of the generation of the baryon asymmetry in a non-equilibrium situation due to asymmetric diffusion of the Chern-Simons number
    corecore