22 research outputs found

    Holographic Screening Length in a Hot Plasma of Two Sphere

    Full text link
    We study the screening length of a quark-antiquark pair moving in a hot plasma living in two sphere S2S^2 manifold using AdS/CFT correspondence where the background metric is four dimensional Schwarzschild-AdS black hole. The geodesic solution of the string ends at the boundary is given by a stationary motion in the equatorial plane as such the separation length LL of quark-antiquark pair is parallel to the angular velocity ω\omega. The screening length and the bound energy are computed numerically using Mathematica. We find that the plots are bounded from below by some functions related to the momentum transfer PcP_c of the drag force configuration. We compare the result by computing the screening length in the quark-antiquark reference frame where the gravity dual are "Boost-AdS" and Kerr-AdS black holes. Finding relations of the parameters of both black holes, we argue that the relation between mass parameters MSchM_{Sch} of the Schwarzschild-AdS black hole and MKerrM_{Kerr} of the Kerr-AdS black hole in high temperature is given by MKerr=MSch(1−a2l2)3/2M_{Kerr}=M_{Sch}(1-a^2l^2)^{3/2}, where aa is the angular momentum parameter.Comment: Major revision: title changed, adding authors, 13 pages, 8 figures, etc. Accepted for publication in European Physical Journal

    Drag force in a strongly coupled anisotropic plasma

    Full text link
    We calculate the drag force experienced by an infinitely massive quark propagating at constant velocity through an anisotropic, strongly coupled N=4 plasma by means of its gravity dual. We find that the gluon cloud trailing behind the quark is generally misaligned with the quark velocity, and that the latter is also misaligned with the force. The drag coefficient ÎŒ\mu can be larger or smaller than the corresponding isotropic value depending on the velocity and the direction of motion. In the ultra-relativistic limit we find that generically Ό∝p\mu \propto p. We discuss the conditions under which this behaviour may extend to more general situations.Comment: 25 pages, 13 figures; v2: minor changes, added reference

    Chiral drag force

    Get PDF
    We provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks and in that they are proportional to the coefficient of the axial anomaly. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to the drag force felt by a heavy quark are analogous to the chiral magnetic effect on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and antiquarks in that event.Comment: 28 pages, small improvement to the discussion of gravitational anomaly, references adde

    Anisotropic Drag Force from 4D Kerr-AdS Black Holes

    Get PDF
    Using AdS/CFT we investigate the effect of angular-momentum-induced anisotropy on the instantaneous drag force of a heavy quark. The dual description is that of a string moving in the background of a Kerr-AdS black holes. The system exhibits the expected focussing of jets towards the impact parameter plane. We put forward that we can use the connection between this focussing behavior and the angular momentum induced pressure gradient to extrapolate the pressure gradient correction to the drag force that can be used for transverse elliptic flow in realistic RHIC. The result is recognizable as a relativistic pressure gradient force.Comment: 22 pages and 4 figure

    Electromagnetic signatures of a strongly coupled anisotropic plasma

    Full text link
    In heavy-ion collisions, quark-gluon plasma is likely to be produced with sizable initial pressure anisotropy, which may leave an imprint on electromagnetic observables. In order to model a strongly coupled anisotropic plasma, we use the AdS/CFT correspondence to calculate the current-current correlator of a weakly gauged U(1) subgroup of R symmetry in an N=4 super-Yang-Mills plasma with a (temporarily) fixed anisotropy. The dual geometry, obtained previously by Janik and Witaszczyk, contains a naked singularity which however permits purely infalling boundary conditions and therefore the usual definition of a retarded correlator. We obtain numerical results for the cases of wave vector parallel and orthogonal to the direction of anisotropy, and we compare with previous isotropic results. In the (unphysical) limit of vanishing frequency (infinite time) we obtain a vanishing DC conductivity for any amount of anisotropy, but the anisotropic AC conductivities smoothly approach the isotropic case in the limit of high frequencies. We also discuss hard photon production from an anisotropic plasma and compare with existing hard-loop resummed calculations.Comment: 23 pages, 15 figures. v3: improved figures 1 and

    Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma

    Full text link
    We extend our analysis of a IIB supergravity solution dual to a spatially anisotropic finite-temperature N=4 super Yang-Mills plasma. The solution is static, possesses an anisotropic horizon, and is completely regular. The full geometry can be viewed as a renormalization group flow from an AdS geometry in the ultraviolet to a Lifshitz-like geometry in the infrared. The anisotropy can be equivalently understood as resulting from a position-dependent theta-term or from a non-zero number density of dissolved D7-branes. The holographic stress tensor is conserved and anisotropic. The presence of a conformal anomaly plays an important role in the thermodynamics. The phase diagram exhibits homogeneous and inhomogeneous (i.e. mixed) phases. In some regions the homogeneous phase displays instabilities reminiscent of those of weakly coupled plasmas. We comment on similarities with QCD at finite baryon density and with the phenomenon of cavitation.Comment: 62 pages, 13 figures; v2: typos fixed, added reference
    corecore