24 research outputs found

    On the Analysis and Interpretation of Pottery Production and Distribution

    Get PDF
    Ceramics are particularly well suited for investigating general patterns of the distribution of premodern products. Archaeometric methods, used to determine raw materials and production techniques, permit the identification of places of production. The work of the research group presented here pursues two objectives: (i) to investigate the usefulness of portable X-ray fluorescence equipment for the analysis of ceramics and (ii) to identify, interpret and study distribution areas of ceramic products in comparative prospective. The paper discusses key economic concepts, sets out the archaeometric methodology and presents initial results in the context of two examples

    Theoretische Grundlagen

    No full text

    Macroscopical Modeling and Numerical Simulation for the Characterization of Crack and Durability Properties of Particle-Reinforced Elastomers

    No full text
    Numerical modeling of particle-reinforced or filled elastomers is a challenging task and includes the adequate representation of finite deformations, nonlinear elasticity, local damage as well as rate-dependent and rate-independent dissipative properties. On the structural scale, the permanent alteration of the material is visible as formation and propagation of discrete cracks, especially in the case of catastrophic crack growth and fatigue crack propagation. In this chapter, macromechanically formulated material models for finite viscoelasticity and endochronic elasto-plasticity of filled elastomers are presented in order to describe the material response of the undamaged continuum. On the FE-discretized structural scale, crack sensitivity of the material is assessed by the material force method. Material forces are used for the computational determination of fracture mechanical parameters of dissipative rubber material. Finally, arbitrary crack growth on the structural level is addressed by an adaptive implementation of cohesive elements. In a first application, crack propagation starting from an initial side notch in a tensile rubber specimen under mixed-mode loading is numerically predicted and compared to experimental observations. In a second example, averaged stress and energy based criteria are studied and compared with respect to their crack path predictability. In a third example, the durability of a tire design is numerically assessed by using the material force method
    corecore