2,587 research outputs found

    Quince (Cydonia oblonga) in vitro plant root formation through an automated temporary inmersion system, and its acclimation

    Get PDF
    Artículo científicoQuince (Cydonia oblonga) is a non-traditional fruit tree found in Costa Rica that has therapeutic and nutritional properties; however its slow growth and root formation prevents the production of a homogeneous population when using conventional farming techniques. Hence, the aim of this research project was to generate uniform plant material in a reduced time span using a temporary immersion bioreactor system (RITAS ®). A semisolid rooting MS culture medium supplemented with 0.1 mg L-1 NAA; 0.3 mg L-1 IBA and 3% sucrose (pH 6.5), developed in the Centro de Investigación en Biotecnología (CIB), Instituto Tecnológico de Costa Rica (ITCR), in Cartago, was used as a reference medium. Four different variations in the sucrose concentration (1%, 2%, 3%, and 4%) were performed in liquid medium. Each trial was evaluated with in vitro plants which had been previously exposed to the culture medium of the corresponding treatments, in a stationary mode and for a 15 day long period, and with in vitro plants without any previous treatment (a total of eight treatments). The comparison of the root formation percentages evidenced the clear effect of sucrose concentration used, with the best results obtained when using the 2% sucrose trial with no pre-treatment (73.3%). The in vitro plants were acclimated in cylinders made out of peat, have previously been disinfected with fungicide, and placed in a humidity chamber at a 20.5°C average temperature and a 75,5% relative humidity for the establishment of weekly fertilizing cycles. The acclimation process generated an 80% survival rate, since several seedlings experienced stem strangulation caused by a fungal attack. The conidiophores identified through optical and scanning electron microscopy evidenced the presence of Cladosporium spp., which was controlled with carbendazim and iprodione fungicides

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore