6 research outputs found

    Human-Robot Adaptive Control of Object-Oriented Action

    No full text
    International audienceThis chapter is concerned with how implicit, nonverbal cues support coordinated action between two partners. Recently, neuroscientists have started uncovering the brain mechanisms involved in how people make predictions about other people's behavioural goals and intentions through action observation. To date, however, only a small number of studies have addressed how the involvement of a task partner influences the planning and control of one's own purposeful action. Here, we review three studies of cooperative action between human and robot partners that address the nature of predictive and reactive motor control in cooperative action. We conclude with a model which achieves motor coordination by task partners each adjusting their actions on the basis of previous trial outcome

    Bimanual force control: cooperation and interference?

    No full text
    Three experiments were designed to determine the level of cooperation or interference observed from the forces generated in one limb on the forces exhibited by the contralateral limb when one or both limbs were producing a constant force (Experiment 1), one limb was producing a dynamic force while the other limb was producing a constant force (Experiment 2), and both limbs were producing dynamic force patterns (Experiment 3). The results for both Experiments 1 and 2 showed relatively strong positive time series cross correlations between the left and right limb forces indicating increases or decreases in the forces generated by one limb resulted in corresponding changes in the forces produced by the homologous muscles of the contralateral limb. Experiment 3 required participants to coordinate 1:1 and 1:2 rhythmical bimanual force production tasks when provided Lissajous feedback. The results indicated very effective performance of both bimanual coordination patterns. However, identifiable influences of right limb forces on the left limb force time series were observed in the 1:2 coordination pattern but not in the 1:1 pattern. The results of all three experiments support the notion that neural crosstalk is partially responsible for the stabilities and instabilities associated with bimanual coordination
    corecore