32 research outputs found

    Activity-dependent p25 generation regulates synaptic plasticity and aβ-induced cognitive impairment

    Get PDF
    Cyclin-dependent kinase 5 regulates numerous neuronal functions with its activator, p35. Under neurotoxic conditions, p35 undergoes proteolytic cleavage to liberate p25, which has been implicated in various neurodegenerative diseases. Here, we show that p25 is generated following neuronal activity under physiological conditions in a GluN2B- and CaMKIIα-dependent manner. Moreover, we developed a knockin mouse model in which endogenous p35 is replaced with a calpain-resistant mutant p35 (Δp35KI) to prevent p25 generation. The Δp35KI mice exhibit impaired long-term depression and defective memory extinction, likely mediated through persistent GluA1 phosphorylation at Ser845. Finally, crossing the Δp35KI mice with the 5XFAD mouse model of Alzheimer's disease (AD) resulted in an amelioration of β-amyloid (Aβ)-induced synaptic depression and cognitive impairment. Together, these results reveal a physiological role of p25 production in synaptic plasticity and memory and provide new insights into the function of p25 in Aβ-associated neurotoxicity and AD-like pathology

    Efficient and versatile CRISPR engineering of human neurons in culture to model neurological disorders

    Get PDF
    The recent identification of multiple new genetic causes of neurological disorders highlights the need for model systems that give experimental access to the underlying biology. In particular, the ability to couple disease-causing mutations with human neuronal differentiation systems would be beneficial. Gene targeting is a well-known approach for dissecting gene function, but low rates of homologous recombination in somatic cells (including neuronal cells) have traditionally impeded the development of robust cellular models of neurological disorders. Recently, however, CRISPR/Cas9 gene editing technologies have expanded the number of systems within which gene targeting is possible. Here we adopt as a model system LUHMES cells, a commercially available diploid human female mesencephalic cell line that differentiates into homogeneous mature neurons in 1-2 weeks. We describe optimised methods for transfection and selection of neuronal progenitor cells carrying targeted genomic alterations using CRISPR/Cas9 technology. By targeting the endogenous X-linked MECP2 locus, we introduced four independent missense mutations that cause the autism spectrum disorder Rett syndrome and observed the desired genetic structure in 3-26% of selected clones, including gene targeting of the inactive X chromosome. Similar efficiencies were achieved by introducing neurodevelopmental disorder-causing mutations at the autosomal EEF1A2 locus on chromosome 20. Our results indicate that efficiency of genetic “knock-in” is determined by the location of the mutation within the donor DNA molecule. Furthermore, we successfully introduced an mCherry tag at the MECP2 locus to yield a fusion protein, demonstrating that larger insertions are also straightforward in this system. We suggest that our optimised methods for altering the genome of LUHMES cells make them an attractive model for the study of neurogenetic disorders

    Neuroendocrine mechanisms controlling female puberty: new approaches, new concepts.

    Full text link
    Sexual development and mature reproductive function are controlled by a handful of neurones that, located in the basal forebrain, produce the decapeptide luteinizing hormone releasing hormone (LHRH). LHRH is released into the portal system that connects the hypothalamus to the pituitary gland and act on the latter to stimulate the synthesis and release of gonadotrophin hormones. The pubertal activation of LHRH release requires coordinated changes in excitatory and inhibitory inputs to LHRH-secreting neurones. These inputs are provided by both transsynaptic and glia-to-neurone communication pathways. Using cellular and molecular approaches, in combination with transgenic animal models and high-throughput procedures for gene discovery, we are gaining new insight into the basic mechanisms underlying this dual control of LHRH secretion and, hence, the initiation of mammalian puberty. Our results suggest that the initiation of puberty requires reciprocal neurone-glia communication involving excitatory amino acids and growth factors, and the coordinated actions of a group of transcriptional regulators that appear to represent a higher level of control governing the pubertal process

    Deletion of the Ttf1 Gene in Differentiated Neurons Disrupts Female Reproduction without Impairing Basal Ganglia Function

    No full text
    Thyroid transcription factor 1 (TTF1) [also known as Nkx2.1 (related to the NK-2 class of homeobox genes) and T/ebp (thyroid-specific enhancer-binding protein)], a homeodomain gene required for basal forebrain morphogenesis, remains expressed in the hypothalamus after birth, suggesting a role in neuroendocrine function. Here,weshow an involvement of TTF1 in the control of mammalian puberty and adult reproductive function. Gene expression profiling of the nonhuman primate hypothalamus revealed that TTF1 expression increases at puberty. Mice in which the Ttf1 gene was ablated from differentiated neurons grew normally and had normal basal ganglia/hypothalamic morphology but exhibited delayed puberty, reduced reproductive capacity, and a short reproductive span. These defects were associated with reduced hypothalamic expression of genes required for sexual development and deregulation of a gene involved in restraining puberty. No extrapyramidal impairments associated with basal ganglia dysfunction were apparent. Thus, although TTF1 appears to fulfill only a morphogenic function in the ventral telencephalon, once this function is satisfied in the hypothalamus, TTF1 remains active as part of the transcriptional machinery controlling female sexual development
    corecore