125 research outputs found

    NAP (davunetide) rescues neuronal dysfunction in a Drosophila model of tauopathy

    Get PDF
    Alzheimer’s disease (AD) is a devastating neurodegenerative disease causing irreversible cognitive decline in the elderly. There is no disease-modifying therapy for this condition and the mechanisms underpinning neuronal dysfunction and neurodegeneration are unclear. Compromised cytoskeletal integrity within neurons is reported in AD. This is believed to result from loss-of-function of the microtubule-associated protein tau, which becomes hyper-phosphorylated and deposits into neurofibrillary tangles in AD. We have developed a Drosophila model of tauopathy in which abnormal human tau mediates neuronal dysfunction characterised by microtubule destabilisation, axonal transport disruption, synaptic defects and behavioural impairments. Here we show that a microtubule-stabilising drug, NAPVSIPQ (NAP), prevents as well as reverses these phenotypes even after they have become established. Moreover, it does not alter abnormal tau levels indicating that it by-passes toxic tau altogether. Thus, microtubule stabilisation is a disease-modifying therapeutic strategy protecting against tau-mediated neuronal dysfunction, which holds great promise for tauopathies like AD

    Alzheimer's disease and Type 2 diabetes: a critical assessment of the shared pathological traits

    Get PDF
    Alzheimer's disease (AD) and Type 2 Diabetes Mellitus (T2DM) are two of the most prevalent diseases in the elderly population worldwide. A growing body of epidemiological studies suggest that people with T2DM are at a higher risk of developing AD. Likewise, AD brains are less capable of glucose uptake from the surroundings resembling a condition of brain insulin resistance. Pathologically AD is characterized by extracellular plaques of Aβ and intracellular neurofibrillary tangles of hyperphosphorylated tau. T2DM, on the other hand is a metabolic disorder characterized by hyperglycemia and insulin resistance. In this review we have discussed how Insulin resistance in T2DM directly exacerbates Aβ and tau pathologies and elucidated the pathophysiological traits of synaptic dysfunction, inflammation, and autophagic impairments that are common to both diseases and indirectly impact Aβ and tau functions in the neurons. Elucidation of the underlying pathways that connect these two diseases will be immensely valuable for designing novel drug targets for Alzheimer's disease

    Insulin-mediated changes in tau hyperphosphorylation and autophagy in a drosophila model of tauopathy and neuroblastoma cells

    Get PDF
    Almost 50 million people in the world are affected by dementia; the most prevalent form of which is Alzheimer’s disease (AD). Although aging is considered to be the main risk factor for AD, growing evidence from epidemiological studies suggests that type 2 diabetes mellitus (T2DM) increases the risk of dementia including AD. Defective brain insulin signaling has been suggested as an early event in AD and other tauopathies but the mechanisms that link these diseases are largely unknown. Tau hyperphosphorylation is a hallmark of neurofibrillary pathology and insulin resistance increases the number of neuritic plaques particularly in AD. Utilizing a combination of our Drosophila models of tauopathy (expressing the 2N4R-Tau) and neuroblastoma cells, we have attempted to decipher the pathways downstream of the insulin signaling cascade that lead to tau hyperphosphorylation, aggregation and autophagic defects. Using cell-based, genetic, and biochemical approaches we have demonstrated that tau phosphorylation at AT8 and PHF1 residues is enhanced in an insulin-resistant environment. We also show that insulin-induced changes in total and phospho-tau are mediated by the crosstalk of AKT, glycogen synthase kinase-3β, and extracellular regulating kinase located downstream of the insulin receptor pathway. Finally, we demonstrate a significant change in the levels of the key proteins in the mammalian target of rapamycin/autophagy pathway, implying an increased impairment of aggregated protein clearance in our transgenic Drosophila models and cultured neuroblastoma cells

    Modelling Tauopathies in Drosophila: Insights from the Fruit Fly

    Get PDF
    Drosophila melanogaster is an experimentally tractable model organism that has been used successfully to model aspects of many human neurodegenerative diseases. Drosophila models of tauopathy have provided valuable insights into tau-mediated mechanisms of neuronal dysfunction and death. Here we review the findings from Drosophila models of tauopathy reported over the past ten years and discuss how they have furthered our understanding of the pathogenesis of tauopathies. We also discuss the multitude of technical advantages that Drosophila offers, which make it highly attractive as a model for such studies

    Effect of Vocal Anesthesia on Adult Dental Patients during Covid-19 pandemic period

    Get PDF
    BACKGROUND: Pain is as a major concern with dental patients. The dentist-patient interaction can reveal the presence of anxiety and fear, which may result in rise of pain. This study aimed to assess vocabulary communication as support to dental anesthesia on the adult dental patient. MATERIALS AND METHODS: This is a prospective, randomized clinical study, conducted from February 2020 through March 2021. Two hundred individuals (112 males, 88 females) of the age range (16 to 84 years) were separated into two groups for testing the level of pain during dental local anesthesia, with vocal communication and without vocal communication. RESULTS: While the control group showed no difference between males and females, there was a difference between the sexes in the experimental group with past dental visits, VAS and injection type having less anxiety (p=0.0001) while with education/VAS having (p£0.01) as appear in sex to age (p£0.05). There was no difference when data were compared by age, or type of anesthesia (inferior alveolar nerve block or infiltration technique). CONCLUSION: Dental anxiety can be alleviated by talking to the patients before the procedure, which could reduce the amount of pain

    Tau-mediated axonal degeneration is prevented by activation of the WldS pathway

    Get PDF
    Tauopathy is characterized by neuronal dysfunction and degeneration occurring as a result of changes to the microtubule-associated protein tau. The neuronal changes evident in tauopathy bear striking morphological resemblance to those reported in models of Wallerian degeneration. The mechanisms underpinning Wallerian degeneration are not fully understood although it can be delayed by the expression of the slow Wallerian degeneration (WldS) protein, which has also been demonstrated to delay axonal degeneration in some models of neurodegenerative disease. Given the morphological similarities between tauopathy and Wallerian degeneration, this study investigated whether tau-mediated phenotypes can be modulated by co-expression of WldS. In a Drosophila model of tauopathy in which expression of human 0N3R tau protein leads to progressive age-dependent phenotypes, WldS was expressed with and without activation of the downstream pathway. The olfactory receptor neuron circuit OR47b was used for these studies in adults, and the larval motor neuron system was employed in larvae. Tau phenotypes studied included neurodegeneration, axonal transport, synaptic deficits and locomotor behaviour. Impact on total tau was ascertained by assessing total, phosphorylated and misfolded tau levels by immunohistochemistry. Activation of the pathway downstream of WldS completely suppressed tau-mediated degeneration. This protective effect was evident even if the pathway downstream of WldS was activated several weeks after tau-mediated degeneration had become established. Though total tau levels were not altered, the protected neurons displayed significantly reduced MC1 immunoreactivity suggestive of clearance of misfolded tau, as well as a trend for a decline in tau species phosphorylated at the AT8 and PHF1 epitopes. In contrast, WldS expression without activation of the downstream protective pathway did not rescue tau-mediated degeneration in adults or improve tau-mediated neuronal dysfunction including deficits in axonal transport, synaptic alterations and locomotor behaviour in tau-expressing larvae. This collectively implies that the pathway mediating the protective effect of WldS intersects with the mechanism(s) of degeneration initiated by tau and can effectively halt tau-mediated degeneration at both early and late stages. Understanding the mechanisms underpinning this protection could identify much-needed disease-modifying targets for tauopathies.</p

    p73: A Multifunctional Protein in Neurobiology

    Get PDF
    p73, a transcription factor of the p53 family, plays a key role in many biological processes including neuronal development. Indeed, mice deficient for both TAp73 and ΔNp73 isoforms display neuronal pathologies, including hydrocephalus and hippocampal dysgenesis, with defects in the CA1-CA3 pyramidal cell layers and the dentate gyrus. TAp73 expression increases in parallel with neuronal differentiation and its ectopic expression induces neurite outgrowth and expression of neuronal markers in neuroblastoma cell lines and neural stem cells, suggesting that it has a pro-differentiation role. In contrast, ΔNp73 shows a survival function in mature cortical neurons as selective ΔNp73 null mice have reduced cortical thickness. Recent evidence has also suggested that p73 isoforms are deregulated in neurodegenerative pathologies such as Alzheimer’s disease, with abnormal tau phosphorylation. Thus, in addition to its increasingly accepted contribution to tumorigenesis, the p73 subfamily also plays a role in neuronal development and neurodegeneration

    Stable Mutated tau441 Transfected SH-SY5Y Cells as Screening Tool for Alzheimer’s Disease Drug Candidates

    Get PDF
    The role of hyperphosphorylation of the microtubule-associated protein tau in the pathological processes of several neurodegenerative diseases is becoming better understood. Consequently, development of new compounds capable of preventing tau hyperphosphorylation is an increasingly hot topic. For this reason, dependable in vitro and in vivo models that reflect tau hyperphosphorylation in human diseases are needed. In this study, we generated and validated an in vitro model appropriate to test potential curative and preventive compound effects on tau phosphorylation. For this purpose, a stably transfected SH-SY5Y cell line was constructed over-expressing mutant human tau441 (SH-SY5Y-TMHT441). Analyses of expression levels and tau phosphorylation status in untreated cells confirmed relevance to human diseases. Subsequently, the effect of different established kinase inhibitors on tau phosphorylation (e.g., residues Thr231, Thr181, and Ser396) was examined. It was shown with several methods including immunosorbent assays and mass spectrometry that the phosphorylation pattern of tau in SH-SY5Y-TMHT441 cells can be reliably modulated by these compounds, specifically targeting JNK, GSK-3, CDK1/5, and CK1. These four protein kinases are known to be involved in in vivo tau phosphorylation and are therefore authentic indicators for the suitability of this new cell culture model for tauopathies
    corecore