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Abstract

Background: Protein aggregation is a significant problem in the biopharmaceutical industry (protein drug stability)
and is associated medically with over 40 human diseases. Although a number of computational models have been
developed for predicting aggregation propensity and identifying aggregation-prone regions in proteins, little
systematic research has been done to determine physicochemical properties relevant to aggregation and their
relative importance to this important process. Such studies may result in not only accurately predicting peptide
aggregation propensities and identifying aggregation prone regions in proteins, but also aid in discovering
additional underlying mechanisms governing this process.

Results: We use two feature selection algorithms to identify 16 features, out of a total of 560 physicochemical
properties, presumably important to protein aggregation. Two predictors (ProA-SVM and ProA-RF) using selected
features are built for predicting peptide aggregation propensity and identifying aggregation prone regions in
proteins. Both methods are compared favourably to other state-of-the-art algorithms in cross validation. The
identified important properties are fairly consistent with previous studies and bring some new insights into protein
and peptide aggregation. One interesting new finding is that aggregation prone peptide sequences have similar
properties to signal peptide and signal anchor sequences.

Conclusions: Both predictors are implemented in a freely available web application (http://www.abl.ku.edu/ProA/).

We suggest that the quaternary structure of protein aggregates, especially soluble oligomers, may allow the
formation of new molecular recognition signals that guide aggregate targeting to specific cellular sites.
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Background

Protein aggregation has been intensely studied experi-
mentally and computationally because the aggregation
of protein drugs is of significant concern. It is encoun-
tered routinely during the protein refolding, purifica-
tion, formulation, storage and shipping processes [1,2].
Moreover, it is associated with over 40 human diseases,
such as Alzheimer’s, Parkinson, Huntington, prion dis-
eases, and type II diabetes [3]. Interestingly, recently
several functional amyloids have been found that play
an important role in cellular biology and caused no
measurable cytotoxicity [4]. Despite extensive research
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efforts, the underlying mechanisms of protein aggrega-
tion are not completely understood [5]. Many common
phenomena related to aggregation, however, have been
observed in various experiments [6]. For example, a
small segment of one protein can be involved in aggrega-
tion while the rest retains a native-like structure. Some
short de novo peptides can also form fibrils that closely re-
semble those formed by natural amyloid proteins. Experi-
ments have confirmed many small peptides with lengths
as short as 7 [7], 6 [8], 5 [9], and even 4 [10] residues can
form aggregates. Swapping an aggregation prone segment
from an amyloidogenic protein to a non-amyloidogenic
homolog can trigger amyloid formation [11]. These obser-
vations suggest that short aggregation prone regions of
sequence and structural specificity, rather than full-length
sequences, can induce the formation of most if not all
aggregates. Although in vivo amyloid disease aggregates
may show different characteristics from those formed
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from protein drugs, as the former are well ordered entities
containing cross beta structure fibers while the later are
frequently amorphous entities, current prevailing theories
consider both amyloid fibers and amorphous aggregates are
formed from partially-folded intermediates [12]. Therefore,
both amorphous aggregates and fibers may contain similar
aggregation prone motifs [13].

A number of computational methods have been de-
veloped for predicting peptide aggregation propensities
and identifying aggregation prone regions in whole
protein sequences [14]. Notable methods include TANGO
[15], PAGE [9], FoldAmyloid [16,17], Zyggegator [18],
AGGRESCAN [19], and Pafig [20]. In all of these methods,
with the exception of Pafig, a small number of physico-
chemical properties were empirically chosen to develop
predictive models. For example, Chiti et al. [21] developed
an empirical model using hydrophobicity, charge and
propensity to predict aggregation rates. The model was
later extended to a seven-parameter model designated
Zyggegator for predicting absolute aggregation rates
[22]. In both models, parameters were fitted using ex-
perimental data. Tartaglia et al. [3] instead developed a
model using physicochemical properties without any
free parameters. PAGE includes more properties such
as aromatic residue number, parallel or anti-parallel
configuration, and accessible surface area [9]. TANGO is a
statistical mechanics algorithm for predicting -aggregation
in peptides and proteins. It is based on the assumption
that the core regions of an aggregate are fully buried [15].
FoldAmyloid uses packing density which represents the
average number of residues within a contact radius of 8.0
A for 20 amino acid residues obtained from a database
consists of protein with sequence identity less than 25% as
well as the probability of hydrogen bond formation [23]. It
has been demonstrated that regions that possess high
packing density can be responsible for amyloidogenic
properties. AGGRESCAN is a sequence based aggregation
prediction tool based on an aggregation propensity scale
for each of the 20 amino acids, which is derived from
experimental data [19].

While these methods have generally resulted in good
prediction accuracies, little systematic research has been
done to determine peptide properties relevant to aggre-
gation and their relative importance. Although Pafig uses
machine learning methods to identify features relevant to
aggregation, the number of the selected features is very
large (41 features). Therefore it is very difficult to evaluate
the biological relevance of each selected feature.

The goal of this study is to use feature selection algo-
rithms to identify a small number of features important
to protein aggregation. The removal of irrelevant or redun-
dant features often improves the performance of learning
models, providing faster and more cost-effective predic-
tions. More importantly, this procedure may provide a
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better understanding of properties important to aggre-
gation. Therefore, an investigation into physicochemi-
cal factors affecting protein aggregation has dual aims,
precisely predicting protein aggregation propensities and
discovering additional underlying mechanisms governing
this important process.

In this study, we initially collect comparatively large
training and test datasets from literature. A set of nine
classification algorithms are used to test the classifiabil-
ity of the datasets and define a baseline for performance
evaluation of feature selection. We then apply two feature
selection methods based on support vector machine (SVM)
[24] and Random Forest (RF) [25] algorithms to rank
560 numeric features. SVM and RF classifiers, named
ProA-SVM and ProA-RF respectively, with selected
features are built, cross-validated and compared to five
state-of-the-art methods. To test the reliability of selected
features and robustness of the learned models, a leave-one-
protein-out (LOPO) cross validation is conducted. Finally,
we use our predictors to calculate aggregation propensity
profiles for some well-studied proteins to identify aggre-
gation prone regions and compare them to experimental
results and other predictive methods.

One interesting finding of this study is that aggregation
prone peptide sequences share similar properties with sig-
nal peptide and signal anchor sequences. This is supported
by our finding that this model for aggregation can be used
to accurately distinguish signal peptides from non-signal
peptides. A possible relationship between aggregation and
localization is also discussed.

Results and discussion

Baseline classification of samples using nine algorithms
We first constructed 9 classifiers based on 9 commonly
used algorithms and then used these classifiers to establish
a performance baseline. The performance of the classifiers
was evaluated using the standard 10-fold cross validation.
The accuracies of the predictions range from 0.717
(RPART) to 0.797 (GBM) (Table 1). The results show
good classifiability on the dataset AP1. Therefore it is
feasible to predict peptide propensities using collected
features by machine learning methods.

Feature selection

We use two feature selection methods, namely SVM-
RFE and RE-IS, to select features which are important to
protein aggregation. The feature selection procedure of
both approaches starts with the full set of features and
then iteratively eliminates a number or a fraction of the
least important features, as determined by the SVM-RFE
and RF-IS algorithms. To determine the optimal set of
features, the accuracy of the cross validation in each
iteration is calculated and plotted against the number
of selected features (Figure 1), leading to a selection of
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Table 1 Performance of 9 classifiers before and after
feature selection

560 features 7 features 10 features

Accuracy MCC Accuracy MCC Accuracy MCC
SVM-linear 0.759 0.518 0.771 0.542 0.788 0.576
RF 0.748 0497 0.737 0474 0.782 0.564
GBM 0.754 0.509 0.718 0436 0.797 0.593
RPART 0717 0435 0.751 0.502 0.729 0457
NNet 0.754 0.507 0.734 0468 0.780 0.558
PLS 0.740 0479 0.788 0578 0.782 0.565
KNN 0.762 0530 0.763 0524 0.763 0528
NB 0.731 0465 0.743 0488 0.790 0.581
Ada 0.754 0.509 0.740 0479 0.779 0.558

The 7 features are selected by SVM-RFE and the 10 features are selected by RF-IS.
The 10 fold cross validation of each classifier is conducted on dataset AP1.

the top 7 features by the SVM-RFE method and the top
10 features by the RF-IS method (Table 2). These num-
bers are chosen because they both represent the first
significant minimums with near-best performance while
the numbers of features are significantly smaller than the
ones with the best performance. For example, in the RF-IS
case the best performance is achieved by the model with
24 features. It is clear that the performance gain from the
14 additional features is insignificant from the one with 10
features (Figure 1).

Evaluation of feature selection performance

We constructed a group of 9 classifiers using the top 7
features selected by the SVM-RFE method and another
group of 9 classifiers with the top 10 features selected by
REF-IS to evaluate the efficacy of feature selection. The
results of the cross-validation of all classifiers on the
dataset AP1 are shown in Table 1. It is observed that, 1)
the top 10 features result in improved performance for
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all 9 tested algorithm; 2) the top 7 features produce en-
hanced performance of 5 classifiers (SVM, RPART, PLS,
KNN and NB), and reduced in the remaining four. Overall,
the feature selection process is very effective in removing a
significant number of features (> 98%) while improving
the performance. In addition, the results imply that
selected features are important to the aggregation
propensities of those peptides.

We further evaluated the selected 10 and 7 features using
LOPO cross-validation. The LOPO results show that SVM
and RF achieve good performance (Table 3). Therefore, we
applied SVM and RF to build 2 predictors for practical uses:
ProA-SVM (Protein Aggregation SVM Predictor) and
ProA-RF (Protein Aggregation RF predictor).

Comparison with other methods

ProA-SVM and ProA-RF were compared on the dataset
AP1 (See Methods) with five state-of-the-art sequence-
based predictors, namely AGGRESCAN, TANGO, PAGE,
FoldAmyloid, and ZYGGREGATOR. To display the out-
puts of these predictors together, their values are scaled into
the numeric range of 0 to 1 (Figure 2). Considering their
different predictive thresholds, the ROC (Receiver Operator
Characteristic) curves are used to evaluate the perform-
ance of all predictors. Figure 2 clearly shows that the
best performance is achieved by ProA-RF with an AUC
(Area Under the ROC Curve) of 0.8954, followed by
ProA-SVM with 0.8674, ZYGGREGATOR with 0.8395,
AAGRESCAN with 0.8336, FoldAmyloid with 0.7946,
PAGE with 0.7303, and TANGO with 0.7121. Based on the
ROC curve, if the predictive threshold (false positive rate)
is set as 0.2, the TN, FN, TP and FP are shown in the
following Table 4. It can be seen that the best perform-
ance is achieved by ProA-RF with accuracy 0.8192. The
followings are ProA-SVM (0.7910), ZYGGREGATOR
(0.7768), AAGRESCAN (0.7316), FoldAmyloid (0.7119),
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Figure 1 Dependency of classification performance on the numbers of selected features A) Classification error plotted against the
number of feature selected by SVM-RFE, B) OOB error plotted against the number of feature selected by RF-IE. “Class error” equals to 1
minus classification accuracy, and “OOB error” is the abbreviation of out-of-bag (OOB) error rate which represents error rate for classification.
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Table 2 Selected top features using SVM-RFE and RF-IS
Method
SVM-RFE  ROSM880105 Hydrophilicity of Polar Amino Acid Side-chains

*Feature Description

RICJ880117 Relative preference in alpha helices
VENT840101 Hydrophobicity, the bitter taste of
L-amino acids
ROBB760110 Conformational properties of middle turn
PONP800105 Surrounding hydrophobicity in beta-sheet
ZIMJ680101 Hydrophobicity by statistical methods
PRAM820103  Shape and surface features of globular proteins
RF-IS GUYH850101 Partition energy
VHEG790101 Transfer free energy
ROSM880105  Hydrophilicity of Polar Amino Acid Side-chains
CASG920101 Hydrophobicity scale from native
protein structures
PONP800107 Accessibility reduction ratio
WILM950102 Hydrophobicity coefficient in RP-HPLC
X15925383 Posa
LEVM780102 Normalized frequency of beta-sheet
PALJ810111 Normalized frequency of beta-sheet
PRAMO900103 Relative frequency in beta-sheet

*AAIndex database entry numbers.

TANGO (0.6610) and PAGE (0.6554). Although ProA-RF
and ProA-SVM have better or comparable performance to
other algorithms, caution should be taken in interpreting
the comparison results because of the different data sets
and validation strategies used to build these models. The
results, nevertheless, clearly demonstrate that the feature
selection procedure used in the study is able to identify
features important to aggregation.

Application to Identification of aggregation prone regions
To compare the ability to identify aggregation prone
regions on entire sequences with those of other methods,
we use ProA-SVM and ProA-RF to generate aggregation
propensity profiles of 37 proteins using sliding windows of
length 7. The models are built using the LOPO approach
and therefore both predictors scan and predict regions on
one protein based on a model built on all other proteins.
In most cases, the predictions of all methods are in
good agreement with the experiment data. Nevertheless,
in some cases the methods developed in this study can
identify more true positives and true negatives than

Table 3 Results of LOPO cross-validation

Predictor TP FN FP TN Ac MCC
ProA-SVM (7 features) 148 36 38 132 0.791 0.5811
ProA-RF (10 features) 146 38 41 129 0.7768 0.5527
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Figure 2 The receiver operator characteristic (ROC) curves
curve for different methods. Area Under the ROC Curve (AUC):
ProA-RF: 0.8929; ProA-SVM: 0.8680, ZYGGREGATOR: 0.8395;
AAGRESCAN: 0.8336; FoldAmyloid: 0.7946; PAGE: 0.7303,
TANGO: 0.7121.

other approaches. One example is the aggregation profile of
the microtubule-associated protein tau (P10636-8), whose
function is involved in promoting microtubule assembly
and stability. It has been experimentally validated that tau is
involved in Alzheimer’s disease [26]. Figure 3 shows the
aggregation propensity profiles by 7 predictors of the region
244-368 in tau. All 7 predictors are able to identify a
nonamyloidogenic region *’LKNVKSKIGSTE®** and an
amyloidogenic region ***GKVQIVYK*", Nevertheless, our
methods correctly predict the nonamyloidogenic regions
2MQTAPVPMPD?*? and **VKSE**, which are predicted
as amyloidogenic regions by most of other methods.

Analysis of selected features

The 16 features from the union of top 7 and top 10 features
can be roughly grouped into 5 different categories (Table 2):
aggregation propensities (“X15925383”), hydrophobi-
city (“ROSM880105”, “VENT840101”, “PONP800105”,

Table 4 Comparison results with other methods

TN FN TP FP Negative Positive Ac
precision precision
ProA-RF 136 30 154 34 0.8193 0.8191 0.8192
ProA-SVM 136 40 144 34 0.7727 0.8090 0.7910
ZYGGREGATOR 136 45 139 34 07514 08035  0.7768
AAGRESCAN 136 61 123 34 06904 07834 07316
FoldAmyloid 136 68 116 34 0.6667 0.7733 07119
TANGO 136 86 98 34 06126 07424 06610
PAGE 136 88 96 34 06071 07385 06554

TP: the number of True Positive samples; FN: the number of False Negative
samples; FP: the number of false positive samples and TP: the number of true
positive samples. Ac: Accuracy. MCC: Matthews correlation coefficient.

TP: the number of True Positive samples; FN: the number of False Negative
samples; FP: the number of false positive samples and TP: the number of true
positive samples. Ac: Accuracy.
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“ZIMJ680101”,“CASG920101” and “WILM950102"),
propensities of secondary structure or conformation
(“RICJ880117”, “ROBB760110”, “PRAM900103”,
“LEVM780102”, “PALJ810111” and PRAM900103), energy
(“GUYH850101” and “VHEG790101”), and accessibility
(“PONP800107”). The index “X15925383” calculated using
the ZYGGREGATOR method (P,g,, pH=7) can be decom-
posed into the properties of hydrophobicity, secondary
structure propensities and net charge. Thus these results
are consistent with previous findings that hydrophobicity,
charges, secondary structure propensities of residues play
important roles in the aggregation process. A detailed an-
notation of selected features is provided in Additional file 1.

Properties relevant to protein aggregation are important
to signal peptides

Among 16 selected features, two are related to protein
translocation. “VHEG790101” is the free energy of
transferring amino acids from aqueous solution to a
lipophilic phase [27], and “PRAM900103” is the statistics
of the relative frequency of beta-sheets distributed in
signal and nascent peptides [28]. There are 6 features
related to hydrophobic properties such as ROSM880105,
VENT840101, PONP800105, ZIMJ680101, CASG920101
and WILM950102. It is consistent with previous publica-
tions that signal peptide and signal anchor sequences have
a distinct hydrophobic region [29].

This observation suggests that peptides with a tendency
to aggregate may have similar properties with signal
peptides and signal anchors. To test this hypothesis, we
downloaded the SignalP version 2.0 dataset (SP) which

contains 4 groups of signal peptides and signal anchors
[30] (See Methods) and tested them by ProA-SVM and
ProA-RF (Tables 4, 5). The accuracy of the predictions
by ProA-SVM on the test dataset SP reaches 0.8346
(Table 5), which is even higher than the accuracy of
0.805 obtained in the predictions on the training set
AP1. The accuracy of the predictions by ProA-RF (0.77)
is also fairly good. Therefore models built on AP1 with
selected features can be used to predict signal peptides
and signal anchors, indicating aggregation-prone frag-
ments share similar physicochemical properties with
these two types of functional sequences.

Table 5 Results of testing ProA-SVM and ProA-RF on the
SP dataset

Predictor Dataset TP FN FP TN Ac MCC
ProA-SVM  EUKSIG.reduc 1022 103 189 936 0.8702 0.7426
EUKANC.reduc 55 1210 56 0.8346 0.6695
GRAM+SIGreduc 118 51 33 136 07515 0.5058
GRAM-SIGreduc 286 64 73 277 08043 06088
Total 1481 230 305 1405 08436 0.6879

ProA-RF EUKSIGreduc 896 229 297 828 07662 05334
EUKANCreduc 60 7 9 57 08797 07597
GRAM+SIGreduc 127 42 38 131 07633 0.5268
GRAM-SIGreduc 290 60 104 246 0.7657 0.5357
Total 1373 338 448 1262 07702 05416

TP: the number of True Positive samples; FN: the number of False Negative
samples; FP: the number of false positive samples and TP: the number of true
positive samples. Ac, Accuracy; MCC, Matthews correlation coefficient.
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While it is interesting that aggregation prone peptides
share common properties with signal peptides and signal
anchors, the results are not particularly surprising since
both aggregation and localization processes are associated
with inter-molecular hydrophobic interactions. This obser-
vation, nevertheless, raises an interesting question whether
aggregation prone regions of a protein determine the
deposition site of protein aggregates since it has been
observed that protein aggregates are deposited at specific
cellular sites [31]. We suggest that the quaternary structure
of protein aggregates, especially soluble oligomers, may
allow the formation of new molecular recognition signals
that guide aggregate targeting to specific cellular sites. If
this hypothesis is confirmed, it will help us to better under-
stand the molecular basis for protein aggregation and may
have significant implications for developing new therapeutic
strategies for treating protein aggregation related diseases.

Methods

Datasets construction

We compiled a set of peptides known to form or not form
aggregates determined experimentally from the literature.
After removing ambiguous entries, we obtained a set
of 354 samples (peptides) including 184 positives and
170 negatives. 297 samples originated from 37 proteins
(the similarity is below 25%) but 57 of them are de novo
peptides. The average lengths of positives and negatives are
12.72 and 12.6 residues while the corresponding standard
deviations are 8.23 and 5.53, respectively. Considering the
confusion of protein names and sequences in the literature,
we referred these peptide sequences to the UniProtKB/
Swiss-Prot database and used their UniProtKB/Swiss-Prot
IDs as their unique identifiers wherever possible. All entries
of Aggregation Propensity dataset 1 (AP1) and their
original references are provided in Additional file 2.

We obtained signal peptide data (SP) from the SignalP
version 2.0, which was previously used for identifying pro-
karyotic and eukaryotic signal peptides and predicting their
cleavage sites [32]. SP contains 4 non-redundant datasets in
which signal peptides and signal anchors are designated as
positive samples and others as negative samples:

1. EUKSIG.reduc: 2250 Eukaryotes signal peptides
(1125 positives and 1125 negatives);

2. EUKANC.reduc: 133 Eukaryotes signal anchors
(67 positives and 66 negatives);

3. GRAM+SIG.reduc: 338 Gram-positive bacteria
signal peptides (169 positives and 169 negatives).

4. GRAM-SIG.reduc: 700 Gram-negative bacteria
signal peptides (350 positives and 350 negatives).

Feature extraction and peptide encoding
We compiled a collection of 560 features including 544
physicochemical properties obtained from AAindex
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database [33] and 16 additional features collected from
published literatures (Additional file 3). All features
were scaled into a range between 0 and 1. Each peptide is
encoded by an array of 560 features, each of which is the
average of corresponding features of the amino acid residues
in the peptide. Thus, the i sample peptide is represented
by 560 features in a form of X = (x,-l,xiz_,...x,»,'...xi%o). If
a peptide or a protein contains an amino acid residue with
‘NA’ value for a particular physicochemical property in
AAindex, this amino acid are not used to calculate the
average value for this physicochemical property.

Classification algorithms

We use nine different classification algorithms to establish
a performance baseline for classification and to test the
efficacy of feature selection. These 9 algorithms include:
SVMs [24], RF [25], Generalized Boosted Models (GBM)
[34], Recursive Partitioning And Regression Trees (RPART)
[35], Neural Network (NNet) [36], Partial Least Squares
(PLS) [37], K Nearest Neighbours (KNN) [38], Naive Bayes
(NB) [39], and Ada Boost (Ada) [40]. These algorithms
are implemented in R using the caret package [41] in
this study. The following is a brief description of these
algorithms. Details can be found in the manual of the
caret package and references cited therein. The specific
commands including parameter tuning of each method
used in the study can be found in the Additional file 4.

The SVM algorithm is a supervised learning method,
which can be used for classification or regression. It
derives parameters of the maximum-margin to con-
struct an optimized separating hyperplane by solving
the optimization. The fit of SVM classifiers includes
the selection of kernel, the kernel's parameters, and
soft margin parameter C.

The Random Forest algorithm is an ensemble machine
learning method that utilizes many independent decision
trees to perform classification or regression. Each of the
member trees is built on bootstrap samples from the
training data by a random subset of available variables.
Each Random Forest model built in this study consists
of 500 decision trees. The number of variable randomly
sampled in each tree is v/M, where M is the number of
total variables.

GBM integrates the concept of boosting methods with
that of classification or regression trees. Using GBM for
classification is to build a sequence of simple decision
trees, where each successive tree is for the prediction
residuals of the preceding tree. A learned function must
be chosen from a restricted class of functions to most
closely approximate the gradient of the loss function.

RPART is a method used to create decision trees and
iteratively split the data on each of the nodes using
user-specified splitting criteria. The algorithm chooses
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the split that partitions the data into separate nodes
such that it minimizes the sum of the squared deviations
of the mean in all of those nodes. The process continues
until it satisfies a user-specified stopping criterion.

NNet is a computational model that imitates the
structure and function of biological neural networks. It
is typically defined by three types of parameters: the
interconnection pattern between neurons, the learning
process for updating the weights of the interconnec-
tions, and the activation function. The NNet used in
this study is a feed-forward neural network with single
hidden layer.

PLS is an extension of the multiple linear regression
model, bearing some relation to principal component ana-
lysis. A PLS model is acquired by projecting the predicted
variables and the observable variables into a new space.
The PLS can be used for classification and regression.

KNN is one of the simplest machine learning algo-
rithms. In KNN classification, a sample is assigned to the
class with most common amongst its k nearest neighbors
(k is a positive integer) by a majority vote of its neighbors.
Despite its simplicity, KNN is often shown good perform-
ance comparable to other state-of-the-art algorithms.

NB uses the Bayes rule to compute the posterior prob-
ability of a categorical class variable, with the conditional
independence assumption. One advantage of NB is that
the decoupling of the class conditional feature distribu-
tions in calculation alleviates the problem known as the
“curse of dimensionality.” Another advantage is that NB
does not need to accurately estimate the absolute accur-
acy of each class because the classification outcome is
determined by the relative probabilities of all classes.

Ada is an adaptive algorithm that can be used to build
a series of classifiers, where subsequent classifiers are
adapted in favor of those instances misclassified by
previous classifiers. Although Ada can be sensitive to
noisy data and statistics outliers, it has been found that
it is often less susceptible to the overfitting problem than
many other learning algorithms.

SVM-RFE and RF-IS
In this study, feature selection is executed using two
state-of-the-art algorithms, SVM based recursive fea-
ture elimination (SVM-RFE) [42] and a Random Forest
importance spectrum based feature selection algorithm
(RE-IS) [43]. SVM-REFE is based on a backward sequen-
tial selection, which starts with all the features and
removes one feature each time. The removed feature is
the one whose removal minimizes the variation of weights.
In this work, SVM-RFE uses linear kernel and C type
SVMs [24].

RF-IS eliminates iteratively a number or a fraction of
the least important features. Random Forest uses two
methods to measure the importance, including the mean
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decrease in accuracy and mean decrease in node impurity
measured by the Gini index. The second approach is used
in this study and 20% fraction of features (default values
in R package varSelRF ) [43] is removed in each loop.
The features are selected in this approach using the
command varSelRF(trainX, trainY, c.sd = 1, mtryFactor = 1,
ntree = 500, ntreelterat = 200, vars.drop.num = NULL,
vars.drop.frac = 0.2, whole.range = TRUE, recompute.var.
imp = TRUE, verbose = FALSE, returnFirstForest = TRUE,
fitted.rf = NULL).

Cross validation

We use the standard 10-fold and Leave-One-Protein-Out
(LOPO) cross validation methods to estimate the perform-
ance of classifiers. In 10-fold cross validation, we randomly
split the AP1 into ten equal portions. We use nine portions
as the training dataset and the remaining one as the test
dataset. All parameters are fitted using an “inner” 10-fold
cross validation in order to avoid potential overfitting prob-
lem. The procedure is repeated nine more times until each
portion is used as the testing dataset once. LOPO mimics
real-world applications by grouping all of the peptides
(samples) according to the proteins to which they belong.
We obtain 37 protein groups and a non-protein group
comprising all de novo peptides. In LOPO cross validation,
the test dataset consists of samples from one protein or the
non-protein group, with all other samples included in the
training dataset.

Performance comparison to other methods

We compare our methods with five state-of-the-art
sequence-based methods including TANGO [15], PAGE
[9], FoldAmyloid [23], Zyggregator [18], and AGGRES-
CAN [19]. To visualize and compare the results of
those methods, outputs from these methods are scaled
into a range of [0, 1]. Since different methods may use
different classification thresholds, the area under the
receiver operator characteristic (ROC) curve (AUC) is
used to evaluate the performances of all methods. AUC
is considered as a robust metric for classifier evaluation
and comparison. An ROC curve is generated by varying
the output threshold of a classifier and plotting the true
positive rate (sensitivity) against the false positive rate
(1 — specificity) for each threshold value. The ROC
curve has been widely used in many protein aggregation
studies as a standard threshold-independent metric [19,23].
We also provide the Matthews correlation coefficient
(MCC) [44]for each method:

TP x TN — FP x EN

MCC =
\/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Where TP is the number of true positives, TN the
number of true negatives, FP the number of false positives
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and FN the number of false negatives. MCC is in the range
between -1 and +1. A MCC of +1 represents a perfect
prediction, 0 an average random prediction and -1 an
inverse prediction.

Prediction of peptide aggregation propensities and
calculation of aggregation propensity profile of the
whole sequences

In this study we aim to develop models for predicting
aggregation propensity of short peptides (i.e. 3-25 amino
acid residues) and aggregation propensity profiles of longer
peptides (> 25 amino acid residues) or entire proteins. The
overall propensity of longer peptides or whole proteins is
less significant since short aggregation prone regions, rather
than the full-length sequences, are probably responsible for
inducing the formation of most if not all aggregation.

Each short peptide is encoded using an input vector
composed of selected features. For a longer peptide or
complete protein sequence, a sliding symmetrical local
window centered at a particular amino acid residue is
used to scan the sequence. Each local window is also
encoded with an input vector. The input vector is then used
by the predictive models to calculate the aggregation pro-
pensity of the short peptide or local window. The predicted
value, scaled to a range from O to 1, is assigned to the short
peptide or the central residue of the window. The predicted
values for all of the local windows from the N-terminus to
the C-terminus provide an aggregation propensity profile
for longer peptides or whole protein sequences. The
short peptides or the regions with values above the
threshold (default is 0.5) are considered as aggregation
prone peptides or regions.

For predicting aggregation propensity profiles, we set
the default window size to 7 amino acid residues. Using a
shorter window may result in a profile with poor smooth-
ness and a longer window may contain more than 2 or
more aggregation prone regions [15]. In addition, experi-
mental measurements and theoretical calculations have
indicated that approximate 7 residues are required to
span the distance of protofilaments [45]. Furthermore,
the optimal window length in the FoldAmyloid algorithm
was found to be 7 amino acid residues [23]. Based on
these considerations, a window size of 7 amino acid resi-
dues is chosen as the default size.

Conclusion

In this study, 16 physicochemical properties have been
identified important to protein aggregation. These
findings confirm that hydrophobicity, secondary struc-
ture propensities and net charge play important roles
in protein aggregation. Two sequence-based predictors
(ProA-SVM and ProA-RF) are built to predict peptide
aggregation propensities based on the SVMs and RF algo-
rithms. Both predictors demonstrate good generalization
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abilities and can be used to identify aggregation prone
regions of proteins. An interesting new finding is that
aggregation peptides have similar properties to those
of signal peptides and anchors, which indicates that
the aggregation prone regions may also determine the
deposition location of protein aggregates. We suggest
that the quaternary structure of protein aggregates may
allow the formation of neo- signals that guide aggregate
targeting to specific cellular sites. If this hypothesis is con-
firmed, it will provide better understanding of the molecu-
lar basis for protein aggregation, and may have significant
implications for developing new therapeutic strategies for
treating protein aggregation related diseases.
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