3,069 research outputs found

    Determining cosmic microwave background structure from its peak distribution

    Get PDF
    We present a new method for time-efficient and accurate extraction of the power spectrum from future cosmic microwave background (CMB) maps based on properties of peaks and troughs of the Gaussian CMB sky. We construct a statistic describing their angular clustering - analogously to galaxies, the 2-point angular correlation function, ξν(θ)\xi_\nu(\theta). We show that for increasing peak threshold, ν\nu, the ξν(θ)\xi_\nu(\theta) is strongly amplified and becomes measurable for ν\nu\geq1 on angular scales 10\leq 10^\circ. Its amplitude at every scale depends uniquely on the CMB temperature correlation function, C(θ)C(\theta), and thus the measured ξν\xi_\nu can be uniquely inverted to obtain C(θ)C(\theta) and its Legendre transform, the power spectrum of the CMB field. Because in this method the CMB power spectrum is deduced from high peaks/troughs of the CMB field, the procedure takes only [f(ν)]2N2[f(\nu)]^2N^2 operations where f(ν)f(\nu) is the fraction of pixels with δTν|\delta T|\geq\nu standard deviations in the map of NN pixels and is e.g. 0.045 and 0.01 for ν\nu=2 and 2.5 respectively. We develop theoretical formalism for the method and show with detailed simulations, using MAP mission parameters, that this method allows to determine very accurately the CMB power spectrum from the upcoming CMB maps in only (104103)×N2\sim(10^{-4}-10^{-3})\times N^2 operations.Comment: To be published in Ap.J. Letters. Minor changes to match the journal versio

    On the Presence of Thermal SZ Induced Signal in the First Year WMAP Temperature Maps

    Full text link
    Using available optical and X-ray catalogues of clusters and superclusters of galaxies, we build templates of tSZ emission as they should be detected by the WMAP experiment. We compute the cross-correlation of our templates with WMAP temperature maps, and interpret our results separately for clusters and for superclusters of galaxies. For clusters of galaxies, we claim 2-5 σ\sigma detections in our templates built from BCS Ebeling et al. (1998), NORAS (Boehringer et al. 2000) and de Grandi et al. (1999) catalogues. In these templates, the typical cluster temperature decrements in WMAP maps are around 15-35 μ\muK in the RJ range (no beam deconvolution applied). Several tests probing the possible influence of foregrounds in our analyses demonstrate that our results are robust against galactic contamination. On supercluster scales, we detect a diffuse component in the V & W WMAP bands which cannot be generated by superclusters in our catalogues (Einasto et al. 1994, 1997), and which is not present in the clean map of Tegmark, de Oliveira-Costa & Hamilton (2003). Using this clean map, our analyses yield, for Einasto's supercluster catalogues, the following upper limit for the comptonization parameter associated to supercluster scales: y_{SC} < 2.18 \time s 10^{-8} at the 95% confidence limit.Comment: MNRAS accepted. New section and minor changes include

    Missing baryons, bulk flows and the E-mode polarization of the Cosmic Microwave Background

    Full text link
    If the peculiar motion of galaxy groups and clusters indeed resembles that of the surrounding baryons, then the kinetic Sunyaev-Zel'dovich (kSZ) pattern of those massive halos should be closely correlated to the kSZ pattern of all surrounding electrons. Likewise, it should also be correlated to the CMB E-mode polarization field generated via Thomson scattering after reionization. We explore the cross-correlation of the kSZ generated in groups and clusters to the all sky E-mode polarization in the context of upcoming CMB experiments like Planck, ACT, SPT or APEX. We find that this cross-correlation is effectively probing redshifts below z=34z=3-4 (where most of baryons cannot be seen), and that it arises in the very large scales (l<10l<10). The significance with which this cross-correlation can be measured depends on the Poissonian uncertainty associated to the number of halos where the kSZ is measured and on the accuracy of the kSZ estimations themselves. Assuming that Planck can provide a cosmic variance limited E-mode polarization map at l<20l<20 and S/N 1\sim 1 kSZ estimates can be gathered for all clusters more massive than 1014M10^{14} M_{\odot}, then this cross-correlation should be measured at the 2--3 σ\sigma level. Further, if an all-sky ACT or SPT type CMB experiment provides similar kSZ measurements for all halos above 1013M10^{13} M_{\odot}, then the cross-correlation total signal to noise (S/N) ratio should be at the level of 4--5. A detection of this cross-correlation would provide direct and definite evidence of bulk flows and missing baryons simultaneously.Comment: 6 pages, 2 figures, submitted to A&

    Limits on Hot Intracluster Gas Contributions to the Tenerife Temperature Anisotropy Map

    Get PDF
    We limit the contribution of the hot intracluster gas, by means of the Sunyaev-Zel'dovich effect, to the temperature anisotropies measured by the Tenerife experiment. The data is cross-correlated with maps generated from the ACO cluster catalogue, the ROSAT PSPC catalogue of clusters of galaxies, a catalogue of superclusters and the HEAO 1 A-1 map of X-ray sources. There is no evidence of contamination by such sources at an rms level of 8μ\sim 8\muK at 99% confidence level at 5o5^o angular resolution. We place an upper limit on the mean Comptonization parameter of y1.5×106 y \le 1.5\times 10^{-6} at the same level of confidence. These limits are slightly more restrictive than those previously found by a similar analysis on the COBE/DMR data and indicate that most of the signal measured by Tenerife is cosmological.Comment: To be published in ApJ (main journal

    Tomography of the Reionization Epoch with Multifrequency CMB Observations

    Full text link
    We study the constraints that future multifrequency Cosmic Microwave Background (CMB) experiments will be able to set on the metal enrichment history of the Inter Galactic Medium at the epoch of reionisation. We forecast the signal to noise ratio for the detection of the signal introduced in the CMB by resonant scattering off metals at the end of the Dark Ages. We take into account systematics associated to inter-channel calibration, PSF reconstruction errors and innacurate foreground removal. We develop an algorithm to optimally extract the signal generated by metals during reionisation and to remove accurately the contamination due to the thermal Sunyaev-Zel'dovich effect. Although demanding levels of foreground characterisation and control of systematics are required, they are very distinct from those encountered in HI-21cm studies and CMB polarization, and this fact encourages the study of resonant scattering off metals as an alternative way of conducting tomography of the reionisation epoch. An ACT-like experiment with optimistic assumtions on systematic effects, and looking at clean regions of the sky, can detect changes of 3%-12% (95% c.l.) of the OIII abundance (with respect its solar value) in the redshift range zz\in [12,22], for reionization redshift zre>10z_{\rm re}>10. However, for zre<10z_{\rm re} <10, it can only set upper limits on NII abundance increments of \sim 60% its solar value in the redshift range zz\in [5.5,9], (95% c.l.). These constraints assume that inter-channel calibration is accurate down to one part in 10410^{4}, which constitutes the most critical technical requirement of this method, but still achievable with current technology.Comment: 10 pages, 2 figures, submitted to Astrophysical Journal. Comments are welcom

    Large lianas as hyperdynamic elements of the tropical forest canopy

    Get PDF
    Lianas (woody vines) are an important component of lowland tropical forests. We report large liana and tree inventory and dynamics data from Amazonia over periods of up to 24 years, making this the longest geographically extensive study of liana ecology to date. We use these results to address basic questions about the ecology of large lianas in mature forests and their interactions with trees. In one intensively studied site we find that large lianas (≥10 cm diameter) represent ,5% of liana stems, but 80% of biomass of well-lit upper canopy lianas. Across sites, large lianas and large trees are both most successful in terms of structural importance in richer soil forests, but large liana success may be controlled more by the availability of large tree supports rather than directly by soil conditions. Long-term annual turnover rates of large lianas are 5–8%, three times those of trees. Lianas are implicated in large tree mortality: liana-infested large trees are three times more likely to die than liana-free large trees, and large lianas are involved in the death of at least 30% of tree basal area. Thus large lianas are a much more dynamic component of Amazon forests than are canopy trees, and they play a much more significant functional role than their structural contribution suggests

    On the Number Density of Sunyaev-Zel'dovich Clusters of Galaxies

    Get PDF
    If the mean properties of clusters of galaxies are well described by the entropy-driven model, the distortion induced by the cluster population on the blackbody spectrum of the Cosmic Microwave Background radiation is proportional to the total amount of intracluster gas while temperature anisotropies are dominated by the contribution of clusters of about 10^{14} solar masses. This result depends marginally on cluster parameters and it can be used to estimate the number density of clusters with enough hot gas to produce a detectable Sunyaev-Zel'dovich effect. Comparing different cosmological models, the relation depends mainly on the density parameter Omega_m. If the number density of clusters could be estimated by a different method, then this dependence could be used to constrain Omega_m.Comment: 8 pages, 3 figures, submitted to ApJ Letter
    corecore