556 research outputs found

    Breakdown of adiabatic transfer of light in waveguides in the presence of absorption

    Full text link
    In atomic physics, adiabatic evolution is often used to achieve a robust and efficient population transfer. Many adiabatic schemes have also been implemented in optical waveguide structures. Recently there has been increasing interests in the influence of decay and absorption, and their engineering applications. Here it is shown that even a small decay can significantly influence the dynamical behaviour of a system, above and beyond a mere change of the overall norm. In particular, a small decay can lead to a breakdown of adiabatic transfer schemes, even when both the spectrum and the eigenfunctions are only sightly modified. This is demonstrated for the generalization of a STIRAP scheme that has recently been implemented in optical waveguide structures. Here the question how an additional absorption in either the initial or the target waveguide influences the transfer property of the scheme is addressed. It is found that the scheme breaks down for small values of the absorption at a relatively sharp threshold, which can be estimated by simple analytical arguments.Comment: 8 pages, 7 figures, revised and extende

    Calculations of time-dependent observables in non-Hermitian quantum mechanics: The problem and a possible solution

    Full text link
    The solutions of the time independent Schrodinger equation for non-Hermitian (NH) Hamiltonians have been extensively studied and calculated in many different fields of physics by using L^2 methods that originally have been developed for the calculations of bound states. The existing non-Hermitian formalism breaks down when dealing with wavepackets(WP). An open question is how time dependent expectation values can be calculated when the Hamiltonian is NH ? Using the F-product formalism, which was recently proposed, [J. Phys. Chem., 107, 7181 (2003)] we calculate the time dependent expectation values of different observable quantities for a simple well known study test case model Hamiltonian. We carry out a comparison between these results with those obtained from conventional(i.e., Hermitian) quantum mechanics (QM) calculations. The remarkable agreement between these results emphasizes the fact that in the NH-QM, unlike standard QM, there is no need to split the entire space into two regions; i.e., the interaction region and its surrounding. Our results open a door for a type of WP propagation calculations within the NH-QM formalism that until now were impossible.Comment: 20 pages, 5 Postscript figures. To be Published in Physical Review

    Infinite matrices may violate the associative law

    Full text link
    The momentum operator for a particle in a box is represented by an infinite order Hermitian matrix PP. Its square P2P^2 is well defined (and diagonal), but its cube P3P^3 is ill defined, because PP2P2PP P^2\neq P^2 P. Truncating these matrices to a finite order restores the associative law, but leads to other curious results.Comment: final version in J. Phys. A28 (1995) 1765-177

    Correlated behavior of conductance and phase rigidity in the transition from the weak-coupling to the strong-coupling regime

    Full text link
    We study the transmission through different small systems as a function of the coupling strength vv to the two attached leads. The leads are identical with only one propagating mode ξCE\xi^E_C in each of them. Besides the conductance GG, we calculate the phase rigidity ρ\rho of the scattering wave function ΨCE\Psi^E_C in the interior of the system. Most interesting results are obtained in the regime of strongly overlapping resonance states where the crossover from staying to traveling modes takes place. The crossover is characterized by collective effects. Here, the conductance is plateau-like enhanced in some energy regions of finite length while corridors with zero transmission (total reflection) appear in other energy regions. This transmission picture depends only weakly on the spectrum of the closed system. It is caused by the alignment of some resonance states of the system with the propagating modes ξCE\xi^E_C in the leads. The alignment of resonance states takes place stepwise by resonance trapping, i.e. it is accompanied by the decoupling of other resonance states from the continuum of propagating modes. This process is quantitatively described by the phase rigidity ρ\rho of the scattering wave function. Averaged over energy in the considered energy window, is correlated with 11-. In the regime of strong coupling, only two short-lived resonance states survive each aligned with one of the channel wave functions ξCE\xi^E_C. They may be identified with traveling modes through the system. The remaining M2M-2 trapped narrow resonance states are well separated from one another.Comment: Resonance trapping mechanism explained in the captions of Figs. 7 to 11. Recent papers added in the list of reference

    Calculating resonance positions and widths using the Siegert approximation method

    Full text link
    Here we present complex resonance states (or Siegert states), that describe the tunneling decay of a trapped quantum particle, from an intuitive point of view which naturally leads to the easily applicable Siegert approximation method that can be used for analytical and numerical calculations of complex resonances of both the linear and nonlinear Schr\"odinger equation. Our approach thus complements other treatments of the subject that mostly focus on methods based on continuation in the complex plane or on semiclassical approximations.Comment: 15 pages, 1 figure, contains MATLAB source code; new version with additional illustration

    Spectral Properties and Lifetimes of Neutral Spin-1/2-Fermions in a Magnetic Guide

    Full text link
    We investigate the resonant motion of neutral spin-1/2-fermions in a magnetic guide. A wealth of unitary and anti-unitary symmetries is revealed in particular giving rise to a two-fold degeneracy of the energy levels. To compute the energies and decay widths of a large number of resonances the complex scaling method is employed. We discuss the dependence of the lifetimes on the angular momentum of the resonance states. In this context the existence of so-called quasi-bound states is shown. In order to approximately calculate the resonance energies of such states a radial Schr\"odinger equation is derived which improves the well-known adiabatic approximation. The effects of an additionally applied homogeneous Ioffe field on the resonance energies and decay widths are also considered. The results are applied to the case of the 6Li^6\text{Li} atom in the F=1/2F=1/2 hyperfine ground state.Comment: accepted for publication in PR

    Use of computers to exclude the influence of radiometer instability upon measurement results

    Get PDF
    A radiometer, practically insensitive to great fluctuations in the equipment amplification coefficient, was developed by dividing the useful signal by a reference signal and modulating the two signals at different frequencies. The signals are simultaneously separated by corresponding synchronous detectors and recorded over two channels. The operation is simplified by replacing the continuous signals by a sampling of discrete values, and using a digital computer. The four steps involved in the process are described and a block diagram is included. This technique not only directly connects the radiometer with the computer, but also records all data provided by the control and signal channels

    Calculation of the Density of States Using Discrete Variable Representation and Toeplitz Matrices

    Full text link
    A direct and exact method for calculating the density of states for systems with localized potentials is presented. The method is based on explicit inversion of the operator EHE-H. The operator is written in the discrete variable representation of the Hamiltonian, and the Toeplitz property of the asymptotic part of the obtained {\it infinite} matrix is used. Thus, the problem is reduced to the inversion of a {\it finite} matrix
    corecore