74 research outputs found
Integrating Al with NiO nano honeycomb to realize an energetic material on silicon substrate
Nano energetic materials offer improved performance in energy release, ignition, and mechanical properties compared to their bulk or micro counterparts. In this study, the authors propose an approach to synthesize an Al/NiO based nano energetic material which is fully compatible with a microsystem. A two-dimensional NiO nano honeycomb is first realized by thermal oxidation of a Ni thin film deposited onto a silicon substrate by thermal evaporation. Then the NiO nano honeycomb is integrated with an Al that is deposited by thermal evaporation to realize an Al/NiO based nano energetic material. This approach has several advantages over previous investigations, such as lower ignition temperature, enhanced interfacial contact area, reduced impurities and Al oxidation, tailored dimensions, and easier integration into a microsystem to realize functional devices. The synthesized Al/NiO based nano energetic material is characterized by scanning electron microscopy, X-ray diffraction, differential thermal analysis, and differential scanning calorimetry
Enhanced generation of VUV radiation by four-wave mixing in mercury using pulsed laser vaporization
The efficiency of a coherent VUV source at 125 nm, based on 2-photon resonant
four-wave mixing in mercury vapor, has been enhanced by up to 2 orders of
magnitude. This enhancement was obtained by locally heating a liquid Hg surface
with a pulsed excimer laser, resulting in a high density vapor plume in which
the nonlinear interaction occurred. Energies up to 5 μJ (1 kW peak power)
have been achieved while keeping the overall Hg cell at room temperature,
avoiding the use of a complex heat pipe. We have observed a strong saturation
of the VUV yield when peak power densities of the fundamental beams exceed the
GW/cm2 range, as well as a large intensity-dependant broadening (up to ~30
cm-1) of the two-photon resonance. The source has potential applications for
high resolution interference lithography and photochemistry
Tuning the Reactivity of Nanoenergetic Gas Generators Based on Bismuth and Iodine oxidizers
There is a growing interest on novel energetic materials called Nanoenergetic Gas- Generators (NGGs) which are potential alternatives to traditional energetic materials including pyrotechnics, propellants, primers and solid rocket fuels. NGGs are formulations that utilize metal powders as a fuel and oxides or hydroxides as oxidizers that can rapidly release large amount of heat and gaseous products to generate shock waves. The heat and pressure discharge, impact sensitivity, long term stability and other critical properties depend on the particle size and shape, as well as assembling procedure and intermixing degree between the components. The extremely high energy density and the ability to tune the dynamic properties of the energetic system makes NGGs ideal candidates to dilute or replace traditional energetic materials for emerging applications. In terms of energy density, performance and controllability of dynamic properties, the energetic materials based on bismuth and iodine compounds are exceptional among the NGGs. The thermodynamic calculations and experimental study confirm that NGGs based on iodine and bismuth compounds mixed with aluminum nanoparticles are the most powerful formulations to date and can be used potentially in microthrusters technology with high thrust-to-weight ratio with controlled combustion and exhaust velocity for space applications. The resulting nano thermites generated significant value of pressure discharge up to 14.8 kPa m3/g. They can also be integrated with carbon nanotubes to form laminar composite yarns with high power actuation of up to 4700 W/kg, or be used in other emerging applications such as biocidal agents to effectively destroy harmful bacteria in seconds, with 22 mg/m2 minimal content over infected area
Recommended from our members
Reactions of oxides of nitrogen (NO{sub x}) leading to the formation of nitric acid (HNO{sub 3}) in non-thermal plasmas (NTPs). White paper for the Strategic Environmental Research and Development Program (SERDP) (Compliance Project CP-1038: Development of non-thermal plasma reactor technology for control of atmospheric emissions)
SERDP Compliance Project CP-1038 (Development of Non-Thermal Plasma Reactor Technology for Control of Atmospheric Emissions) has been commissioned to evaluate and develop non-thermal plasma (NTP) reactor technology, a form of low-temperature plasma chemical processing, for Department of Defense (DoD) applications. The primary emphasis is on the control of emissions of oxides of nitrogen (NO{sub x}), with a secondary emphasis on hazardous air pollutant (HAP) emission control (primarily volatile organic compounds--VOCs). In this white paper, as a SERDP-requested deliverable, the authors will verify the NO{sub x} removal reactions in NTPs, especially those converging on nitric acid (HNO{sub 3}) as a primary reaction product. The benefit of making HNO{sub 3} as a primary terminal de-NO{sub x} product is that it can be easily neutralized by relatively simple caustic (base) scrubbers--although the economics of scrubber systems needs to be compared with the conversion to particles that can be filtered or precipitated. Jet engines also emit a significant amount of SO{sub x} in their exhaust; NTPs also remove SO{sub x} and actually do it more effectively in combination with NO{sub x}. This will not be dealt with in this particular white paper
Recommended from our members
Economic assessment of proposed electric-discharge non-thermal plasma field-pilot demonstration units for NO{sub x} removal in jet-engine exhaust: White paper for SERDP Project CP-1038
This project is currently evaluating non-thermal plasma (NTP) technologies for treating jet-engine exhaust arising from DoD test facilities. In the past, some economic analyses for NTP de-NO{sub x} have shown that it is not economical, compared to other techniques. The main reasons for this conclusion was that the previous analyses examined stand-alone, or less mature electrical-discharge reactors, or electron-beam based systems that incorporated both chemical additives and quite expensive electron accelerators. Also, in contrast to more recent developments, both the discharge and electron-beam techniques of the past did not extensively incorporate methods to increase the yields of active NO{sub x}-decomposing species. In an earlier White paper and a Project Report, the authors have analyzed the costs of more mature NTP systems incorporating chemical additives and new-concept NTP technologies for jet-engine emissions control and have shown lower exhaust-gas treatment costs for NTP systems compared to baseline standard de-NO{sub x} technologies like Selective Catalytic Reduction (SCR) combined with a wet scrubber or SCR combined with an electrostatic precipitator (ESP). In this paper, the authors will examine their most-promising candidate NTP reactor systems for a field-pilot demonstration on jet-engine exhaust and discuss the economic analyses for these hybrid units, which show that the economics of the proposed candidate systems are more favorable than earlier NTP reactor economic-assessment conclusions for NO{sub x} removal
Reply to Comment on "nanoparticle Enhanced Laser-Induced Breakdown Spectroscopy for Microdrop Analysis at subppm Level"
In this paper, nanoparticle enhanced laser-induced breakdown spectroscopy (NELIBS) was applied to the elemental chemical analysis of microdrops of solutions with analyte concentration at subppm level. The effect on laser ablation of the strong local enhancement of the electromagnetic field allows enhancing the optical emission signal up to more than 1 order of magnitude, enabling LIBS to quantify ppb concentration and notably decreasing the limit of detection (LOD) of the technique. At optimized conditions, it was demonstrated that NELIBS can reach an absolute LOD of few picograms for Pb and 0.2 pg for Ag. The effect of field enhancement in NELIBS was tested on biological solutions such as protein solutions and human serum, in order to improve the sensitivity of LIBS with samples where the formation and excitation of the plasma are not as efficient as with metals. Even in these difficult cases, a significant improvement with respect to conventional LIBS was observed
- …