98 research outputs found

    Targeting RNA Polymerase Primary σ70 as a Therapeutic Strategy against Methicillin-Resistant Staphylococcus aureus by Antisense Peptide Nucleic Acid

    Get PDF
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) causes threatening infection-related mortality worldwide. Currently, spread of multi-drug resistance (MDR) MRSA limits therapeutic options and requires new approaches to "druggable" target discovery, as well as development of novel MRSA-active antibiotics. RNA polymerase primary σ⁷⁰ (encoded by gene rpoD) is a highly conserved prokaryotic factor essential for transcription initiation in exponentially growing cells of diverse S. aureus, implying potential for antisense inhibition. METHODOLOGY/PRINCIPAL FINDINGS: By synthesizing a serial of cell penetrating peptide conjugated peptide nucleic acids (PPNAs) based on software predicted parameters and further design optimization, we identified a target sequence (234 to 243 nt) within rpoD mRNA conserved region 3.0 being more sensitive to antisense inhibition. A (KFF)₃K peptide conjugated 10-mer complementary PNA (PPNA2332) was developed for potent micromolar-range growth inhibitory effects against four pathogenic S. aureus strains with different resistance phenotypes, including clinical vancomycin-intermediate resistance S. aureus and MDR-MRSA isolates. PPNA2332 showed bacteriocidal antisense effect at 3.2 fold of MIC value against MRSA/VISA Mu50, and its sequence specificity was demonstrated in that PPNA with scrambled PNA sequence (Scr PPNA2332) exhibited no growth inhibitory effect at higher concentrations. Also, PPNA2332 specifically interferes with rpoD mRNA, inhibiting translation of its protein product σ⁷⁰ in a concentration-dependent manner. Full decay of mRNA and suppressed expression of σ⁷⁰ were observed for 40 ”M or 12.5 ”M PPNA2332 treatment, respectively, but not for 40 ”M Scr PPNA2332 treatment in pure culture of MRSA/VISA Mu50 strain. PPNA2332 (≄1 ”M) essentially cleared lethal MRSA/VISA Mu50 infection in epithelial cell cultures, and eliminated viable bacterial cells in a time- and concentration- dependent manner, without showing any apparent toxicity at 10 ”M. CONCLUSIONS: The present result suggested that RNAP primary σ⁷⁰ is a very promising candidate target for developing novel antisense antibiotic to treat severe MRSA infections

    En kunnskapsbasert finansnĂŠring

    Get PDF
    Prosjektet ”En kunnskapsbasert finansnĂŠring” inngĂ„r som delprosjekt i det store nasjonale forskningsprosjektet ”Et kunnskapsbasert Norge” som gjennomfĂžres ved HandelshĂžyskolen BI under ledelse av professor Torger Reve. Norsk nĂŠringsliv er avhengig av en velfungerende finansnĂŠring. Denne nĂŠringen fungerer pĂ„ mange mĂ„ter som et nav for de andre nĂŠringene i Ăžkonomien. For at nĂŠringslivet skal kunne skape vekst, mĂ„ det kanaliseres kapital til prosjekter som har hĂžy lĂžnnsomhet og evne til verdiskaping. Dersom bedriftene selv ikke har denne kapitalen tilgjengelig er det nĂždvendig med ekstern kapitaltilfĂžrsel. Det er her finansnĂŠringen bidrar, bĂ„de med kapital og kompetanse om hvor kapitalen bĂžr kanaliseres. Finansmarkedet fungerer ogsĂ„ som et korrektiv til bedriftenes atferd. Bedrifter som gjĂžr det bra blir premiert gjennom hĂžyere verdsetting pĂ„ bĂžrs, mens de som gjĂžr det dĂ„rlig opplever fallende kurser. PĂ„ denne mĂ„ten fĂ„r eierne et tydelig signal om hvor godt bedriften er styrt og kan pĂ„ denne bakgrunn legge opp til endringer i bedriftens strategi. Videre spiller finansmarkedet en viktig rolle gjennom Ă„ ivareta bĂ„de nĂŠringslivets, husholdningenes og offentlig sektors behov for likviditet gjennom Ă„ tilby regulĂŠre banktjenester. NĂŠringen har ogsĂ„ en sentral oppgave gjennom Ă„ avdempe risiko gjennom ulike forsikringsprodukter. Sist, men ikke minst, har finansnĂŠringen en formidlerrolle gjennom Ă„ bistĂ„ aktĂžrer i Ăžkonomien i Ă„ flytte verdier seg imellom. Vi snakker med andre ord om en nĂŠring med mange aktivitetsomrĂ„der og som i all hovedsak har forankret sine aktiviteter i andre aktĂžrers Ăžkonomiske aktivitet

    Quorum Quenching of Nitrobacter winogradskyi Suggests that Quorum Sensing Regulates Fluxes of Nitrogen Oxide(s) during Nitrification

    No full text
    Quorum sensing (QS) is a widespread process in bacteria used to coordinate gene expression with cell density, diffusion dynamics, and spatial distribution through the production of diffusible chemical signals. To date, most studies on QS have focused on model bacteria that are amenable to genetic manipulation and capable of high growth rates, but many environmentally important bacteria have been overlooked. For example, representatives of proteobacteria that participate in nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, produce QS signals called acyl-homoserine lactones (AHLs). Nitrification emits nitrogen oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. Despite considerable interest in nitrification, the purpose of QS in the physiology/ecology of nitrifying bacteria is poorly understood. Through a quorum quenching approach, we investigated the role of QS in a well-studied AHL-producing nitrite oxidizer, Nitrobacter winogradskyi. We added a recombinant AiiA lactonase to N. winogradskyi cultures to degrade AHLs to prevent their accumulation and to induce a QS-negative phenotype and then used mRNA sequencing (mRNA-Seq) to identify putative QS-controlled genes. Our transcriptome analysis showed that expression of nirK and nirK cluster genes (ncgABC) increased up to 19.9-fold under QS-proficient conditions (minus active lactonase). These data led to us to query if QS influenced nitrogen oxide gas fluxes in N. winogradskyi. Production and consumption of NOx increased and production of N2O decreased under QS-proficient conditions. Quorum quenching transcriptome approaches have broad potential to identify QS-controlled genes and phenotypes in organisms that are not genetically tractable
    • 

    corecore