672 research outputs found

    Observing Culture: Differences in U.S.-American and German Team Meeting Behaviors

    Get PDF
    Although previous research has theorized about team interaction differences between the German and U.S. cultures, actual behavioral observations of such differences are sparse. This study explores team meetings as a context for examining intercultural differences. We analyzed a total of 5,188 meeting behaviors in German and U.S. student teams. All teams discussed the same task to consensus. Results from behavioral process analyses showed that German teams focused significantly more on problem analysis, whereas U.S. teams focused more on solution production. Moreover, U.S. teams showed significantly more positive socioemotional meeting behavior than German teams. Finally, German teams showed significantly more counteractive behavior such as complaining than U.S. teams. We discuss theoretical and pragmatic implications for understanding these observable differences and for improving interaction in intercultural teams

    Coherent Time Evolution and Boundary Conditions of Two-Photon Quantum Walks

    Full text link
    Multi-photon quantum walks in integrated optics are an attractive controlled quantum system, that can mimic less readily accessible quantum systems and exhibit behavior that cannot in general be accurately replicated by classical light without an exponential overhead in resources. The ability to observe time evolution of such systems is important for characterising multi-particle quantum dynamics---notably this includes the effects of boundary conditions for walks in spaces of finite size. Here we demonstrate the coherent evolution of quantum walks of two indistinguishable photons using planar arrays of 21 evanescently coupled waveguides fabricated in silicon oxynitride technology. We compare three time evolutions, that follow closely a model assuming unitary evolution, corresponding to three different lengths of the array---in each case we observe quantum interference features that violate classical predictions. The longest array includes reflecting boundary conditions.Comment: 7 pages,7 figure

    The nonrelativistic limit of the Majorana equation and its simulation in trapped ions

    Full text link
    We analyze the Majorana equation in the limit where the particle is at rest. We show that several counterintuitive features, absent in the rest limit of the Dirac equation, do appear. Among them, Dirac-like positive energy solutions that turn into negative energy ones by free evolution, or nonstandard oscillations and interference between real and imaginary spinor components for complex solutions. We also study the ultrarelativistic limit, showing that the Majorana and Dirac equations mutually converge. Furthermore, we propose a physical implementation in trapped ions.Comment: 7 pages, 1 figure. Proceedings of 18th Central European Workshop on Quantum Optics (CEWQO 2011), Madrid, Spai

    Quantum walks of correlated photon pairs in two-dimensional waveguide arrays

    Get PDF
    We demonstrate quantum walks of correlated photons in a 2D network of directly laser written waveguides coupled in a 'swiss cross' arrangement. The correlated detection events show high-visibility quantum interference and unique composite behaviour: strong correlation and independence of the quantum walkers, between and within the planes of the cross. Violations of a classically defined inequality, for photons injected in the same plane and in orthogonal planes, reveal non-classical behaviour in a non-planar structure.Comment: 5 pages, 5 figure

    Cation selectivity of the presequence translocase channel Tim23 is crucial for efficient protein import.

    No full text
    Virtually all mitochondrial matrix proteins and a considerable number of inner membrane proteins carry a positively charged, N-terminal presequence and are imported by the TIM23 complex (presequence translocase) located in the inner mitochondrial membrane. The voltage-regulated Tim23 channel constitutes the actual protein-import pore wide enough to allow the passage of polypeptides with a secondary structure. In this study, we identify amino acids important for the cation selectivity of Tim23. Structure based mutants show that selectivity is provided by highly conserved, pore-lining amino acids. Mutations of these amino acid residues lead to reduced selectivity properties, reduced protein import capacity and they render the Tim23 channel insensitive to substrates. We thus show that the cation selectivity of the Tim23 channel is a key feature for substrate recognition and efficient protein import
    • …
    corecore