191 research outputs found

    Performative National Cultures: Hybridity, Blurred Boundaries, and Agency in Untouchable and Brick Lane

    Get PDF
    Monica Ali\u27s Brick Lane and Mulk Raj Anand\u27s Untouchable unite through the complex examination of nation and culture that they both perform. By utilizing post-colonial and cultural theories, as well as Judith Bulter\u27s notion of performativity, it is possible to thoroughly study Ali and Anand\u27s portrayal of national culture through their characters and writing. Since these novels focus on characters that experience immigration to Britain or colonization by the British, Ali and Anand employ the opportunities provided by such experiences, which include immigrant and colonized characters that change their collection of cultural practices and then are contrasted with other characters in similar positions, to emphasize the hybrid national cultures of their characters and novels. These characters\u27 national cultures are revealed to be performative as they make passionate attachments to identification categories, perform the normative practices mechanically, and desire the privileged national culture\u27s attributes, but are still able to rearticulate their national cultural identity within the preexisting signification system. Thus, Ali and Anand highlight the performative construction of national culture by drawing attention to the performances of the hybrid national cultural identities that they portray in and through their novels. These insights that are gained from the juxtaposition of Ali and Anand\u27s writing also trace what has or has not changed about the function of national culture and how the definition of Britishness has evolved to expose that this category is in constant flux

    Use of the ICF to investigate impairment, activity limitation and participation restriction in people using ankle-foot orthoses to manage mobility disabilities

    Get PDF
    This study investigated differences in impairment, activity limitation, participation restrictions and psychological distress between participants using ankle-foot orthoses (AFOs) as recommended, participants who did not use AFOs as recommended and participants who did not know recommendations for use.  Adults (n = 157) fitted with an AFO by an NHS Orthotic Service in Scotland completed a postal questionnaire that measured impairment, activity limitations participation restrictions and psychological distress using scales from the RAND 36-Item Health Survey 1.0 and the Hospital Anxiety and Depression Scale (HADS).  41% of participants used their AFOs as recommended, 32% did not use their AFOs as recommended and 27% did not know the recommendations for use. Participants using AFOs as recommended reported lower levels of impairment and activity limitations, indicated by higher energy levels (p = 0.005), higher physical functioning (p = 0.005), lower role-limitations due to emotional problems (p = 0.001) and lower levels of anxiety (p = 0.003) compared to people not using AFOs as recommended.  Health professionals need to ensure whether patients understand the recommendations for use of their AFO. Additionally, the results of the study support the value of evaluating patients' psychological well-being to gain a better understanding of AFO use. Implications for Rehabilitation Participants who reported using AFOs as recommended had significantly lower levels of impairment, activity limitations and anxiety compared to those who did not use their AFO as recommended. In this study, 27% of participants did not know recommendations for use of AFOs. Health professionals should give consideration as to how information, regarding wearing instructions and use of AFOs, is provided to people who are prescribed AFOs. Psychological outcomes in orthotics are rarely assessed. However, this study demonstrates there is a value in measuring psychological outcomes in orthotic management

    Trigonal to pentagonal bipyramidal coordination switching in a Co(II) single-ion magnet

    Get PDF
    In molecular magnetism and single-ion magnets in particular, the observation of slow relaxation of the magnetization is intimately linked to the coordination environment of the metal center. Such systems typically have blocking temperatures well below that of liquid nitrogen, and therefore detailed magnetic characterization is usually carried out at very low temperatures. Despite this, there has been little advantage taken of ultralow temperature single-crystal X-ray diffraction techniques that could provide a full understanding of the crystal structure in the same temperature regime where slow magnetic relaxation occurs. Here, we present a systematic variable temperature single crystal X-ray diffraction study of [CoII(NO3)3(H2O)(HDABCO)] (1) {DABCO = 1,4-diazabicyclo[2.2.2]octane} conducted between 295 to 4 K. A reversible and robust disorder-to-order, single-crystal to single-crystal phase transition was identified, which accompanied a switching of the coordination geometry around the central Co(II) from 5- to 7-coordinate below 140 K. The magnetic properties were investigated, revealing slow relaxation of the magnetization arising from a large easy-plane magnetic anisotropy (+D) in the Co(II) pentagonal bipyramidal environment observed at low temperatures. This study highlights the importance of conducting thorough low temperature crystallographic studies, particularly where magnetic characterization is carried out at such low temperatures

    Otolith characterization and integrative species identification of adult mesopelagic fishes from the western North Atlantic Ocean

    Get PDF
    Fish diversity and ecology in the ocean’s mesopelagic zone are understudied compared to other marine regions despite growing interest in harvesting these potential resources. Otoliths can provide a wealth of taxonomic and life history information about fish, which can help fill these knowledge gaps; however, there has been relatively little research to date on the otoliths of mesopelagic species. Here, a species-specific image library was assembled of sagittal otoliths from 70 mesopelagic fishes belonging to 29 families collected in the western North Atlantic Ocean. Images of adult sagittal otoliths from 12 species were documented and photographed for the first time. The fish were identified to species with a combination of morphological characters and DNA barcoding. Regressions between otolith size and fish length are presented for the six species with the largest sample sizes in this study. This otolith image library, coupled with otolith-length and width to fish-length relationships, can be used for prey identification and back-calculation of fish size, making it a valuable tool for studies relating to food webs in the important yet poorly understood mesopelagic zone. In addition, the 44 fish barcodes generated in this study highlight the benefit of using an integrative taxonomic approach to studies of this nature, as well as add to existing public databases that enable cryptic species and metabarcoding analyses of mesopelagic species

    Effect of pressure on porous materials

    Get PDF
    Research to design and synthesise new porous materials is a rapidly growing field with thousands of new systems proposed every year due to their potential use in a multitude of application in a wide range of fields. Pressure is a powerful tool for the characterisation of structure-property relationships in these materials, the understanding of which is key to unlocking their full potential. In this thesis we investigate a range of porous materials at a range of pressures. Over time the chemical architecture and complexity of porous materials has increased. Although some systems display remarkable stability to high-pressures, which we generally think of as being above 1 GPa (10,000 bar), in general, the compressibility of porous materials have increased substantially over the last 10 years, rendering most unstable at GPa pressures. Here we present new methods for investigating porous materials at much more moderate pressures (100’s of bar), alongside more traditional high-pressure methods (diamond anvil cell techniques), finishing with gas sorption studies in a molecular based porous material. Here, the design and development of a new moderate pressure sapphire capillary cell for the small molecule beamline I19 at the Diamond Light Source is described. This cell allowed access to pressures of more than 1000 bar regularly with a maximum operating pressure of 1500 bar with very precise pressure control (< 10 bar) on both increasing and decreasing pressure. This cell closes the gap between ambient pressure and the lowest pressures attainable using a diamond anvil cell (DAC), which is generally above 0.2 GPa (2000 bar). Along with the development of the sapphire capillary pressure cell, the compression to 1000 bar of the small organic sample molecule Hexamethylenetetramine (hexamine, C6H12N4) and its deuterated form (C6D12N4) was determined, demonstrating the precision possible using this cell. Solvent uptake into porous materials can induce large structural changes at 100’s of bar. In the case of the Sc-based Metal-organic framework (MOF), Sc2BDC3 (BDC = 1,4-benzenedicarboxylate), we used the sapphire capillary pressure cell to study changes in the framework structure on the uptake of n-pentane and isopentane. This work shows how the shape and smaller size of n-pentane facilitated the swelling of the framework that could be used to explain the increase in stability of the MOF to applied pressure. The effect of pressure on the previously unreported Cu-framework bis[1-(4- pyridyl)butane-1,3-dione]copper(II) (CuPyr-I) was investigated using high-pressure single-crystal diffraction techniques (DAC). CuPyr-I was found to exhibit high-pressure and low-temperature phase transitions, a pressure induced Jahn- Teller switch (which was hydrostatic medium dependent), piezochromism, and negative linear compressibility. Although each of these phenomena has been reported numerous times in a range of materials, this is to the best of our knowledge the first example to have been observed within the same material. The final two chapters investigate the exceptional thermal, chemical, and mechanical stability of a porous molecular crystal system (PMC) prepared by the co-crystallisation of a cobalt phthalocyanine derivative and a fullerene (C 60 or C70). The stabilising fullerene is captured in the cavity between two phthalocyanines in a ball and socket arrangement. These PMCs retain their porous structure: on the evacuation of solvent of crystalisation; on heating to over 500 K; on prolonged immersion in boiling aqueous acid, base, and water; and at extreme pressures of up to 5.85 GPa, the first reported high-pressure study of a PMC. the reactive cobalt cation is accessible via the massive interconnected voids, (8 nm3), as demonstrated by the adsorption and binding of CO and O2 to the empty metal site using in situ crystallographic methods available at beamline I19, Diamond Light Source

    Pressure-and temperature induced phase transitions, piezochromism, NLC behaviour and pressure controlled Jahn–Teller switching in a Cu-based framework

    Get PDF
    In situ single-crystal diffraction and spectroscopic techniques have been used to study a previously unreported Cu-framework bis[1-(4-pyridyl)butane-1,3-dione]copper(II) (CuPyr-I). CuPyr-I was found to exhibit high-pressure and low-temperature phase transitions, piezochromism, negative linear compressibility, and a pressure induced Jahn?Teller switch, where the switching pressure was hydrostatic media dependent.The support by the Spanish Ministerio de Econom´ıa, Industria y Competitividad (PGC2018-101464-B-I00), and INNVAL 18/28 is also acknowledged

    Beam Dynamics and First Operation of the Sub-Harmonic Bunching System in the CTF3 Injector

    Get PDF
    The CLIC Test Facility 3 (CTF3), built at CERN by an international collaboration, aims at demonstrating the feasibility of the CLIC scheme by 2010. The CTF3 drive beam generation scheme relies on the use of a fast phase switch of a sub-harmonic bunching system in order to phase-code the bunches. The amount of charge in unwanted satellite bunches is an important quantity, which must be minimized. Beam dynamic simulations have been used to study the problem, showing the limitation of the present CTF3 design and the gain of potential upgrades. In this paper the results are discussed and compared with beam measurements taken during the first operation of the system

    At Sea Test 2 deployment cruise : cruise 475 on board R/V Oceanus September 22 – 26, 2011 Woods Hole –Woods Hole, MA

    Get PDF
    The R/V Oceanus, on Cruise 475, carried out the deployment of three moorings for the Coastal and Global Scale Nodes (CGSN) Implementing Organization of the NSF Ocean Observatories Initiative. These three moorings are prototypes of the moorings to be used by CGSN at the Pioneer, Endurance, and Global Arrays. Oceanus departed from Woods Hole, Massachusetts on September 22, 2011 and steamed south to the location of the mooring deployments on the shelf break. Over three days, September 23-25, Oceanus surveyed the bottom at the planned mooring sites, deployed the moorings, and carried out on site verification of the functioning of the moorings and moored hardware. Oceanus returned to Woods Hole on September 26, 2011.Funding was provided by the National Science Foundation through the Consortium for Ocean Leadershi

    Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV) following in vivo escape from neutralising antibody

    Get PDF
    &lt;b&gt;BACKGROUND:&lt;/b&gt; In the acute phase of infection with feline immunodeficiency virus (FIV), the virus targets activated CD4+ T cells by utilising CD134 (OX40) as a primary attachment receptor and CXCR4 as a co-receptor. The nature of the virus-receptor interaction varies between isolates; strains such as GL8 and CPGammer recognise a "complex" determinant on CD134 formed by cysteine-rich domains (CRDs) 1 and 2 of the molecule while strains such as PPR and B2542 require a more "simple" determinant comprising CRD1 only for infection. These differences in receptor recognition manifest as variations in sensitivity to receptor antagonists. In this study, we ask whether the nature of the virus-receptor interaction evolves in vivo.&lt;p&gt;&lt;/p&gt; &lt;b&gt;RESULTS:&lt;/b&gt; Following infection with a homogeneous viral population derived from a pathogenic molecular clone, a quasispecies emerged comprising variants with distinct sensitivities to neutralising antibody and displaying evidence of conversion from a "complex" to a "simple" interaction with CD134. Escape from neutralising antibody was mediated primarily by length and sequence polymorphisms in the V5 region of Env, and these alterations in V5 modulated the virus-receptor interaction as indicated by altered sensitivities to antagonism by both anti-CD134 antibody and soluble CD134.&lt;p&gt;&lt;/p&gt; &lt;b&gt;CONCLUSIONS:&lt;/b&gt; The FIV-receptor interaction evolves under the selective pressure of the host humoral immune response, and the V5 loop contributes to the virus-receptor interaction. Our data are consistent with a model whereby viruses with distinct biological properties are present in early versus late infection and with a shift from a "complex" to a "simple" interaction with CD134 with time post-infection.&lt;p&gt;&lt;/p&gt
    • …
    corecore