3,359 research outputs found

    Lunar Glovebox Balance with Wireless Technology

    Get PDF
    The most important equipment required for processing lunar samples is a high-quality mass balance for maintaining accurate weight inventory, security, and scientific study. After careful review, a Curation Office memo by Michael Duke in 1978 chose the Mettler PL200 to be used for sample weight measurements inside the gloveboxes (Fig. 3). These commercial off-the-shelf (COTS) balances did not meet the strict accepted material requirements in the Lunar lab. As a result, each balance housing, weighing pan, and wiring was custom retrofitted to meet Lunar Operating Procedure (LOP) 54 requirements [for material construction restrictions]. The original design drawings for the custom housings, readout support stands, and wiring were done by the JSC engineering directorate. The 1977- 1978 schematics, drawings, and files are now housed in the curation Data Center. Per the design specifications, the housing was fabricated from aluminum grade 6061 T6, seamless welds, and anodized per MIL-A-8625 type I, class I. The balance feet were TFE Teflon and any required joints were sealed with Viton A gaskets. The readout display and support stands outside the glovebox were fabricated from 300 series stainless steel with #4 finish and mounted to the glovebox with welded bolts. Wire harnesses that linked the balance with the outside display and power were encapsulated with TFE Teflon and transported through custom Deutsch wire bulk head pass-through systems from inside to outside the glovebox. These Deutsch connectors were custom fabricated with 316L stainless steel bodies, Viton A O-rings, aluminum 6061 with electroless nickel plating, Teflon (replacing the silicone), and gold crimp connectors (no soldering). Many of the Deutsch connectors may have been used in the Apollo program high vacuum complex in building 37 and date to about 1968 to 1970

    Applicability and Utility of the Astromaterials X-Ray Computed Tomography Laboratory at Johnson Space Center

    Get PDF
    The Astromaterials Acquisition and Curation Office at NASAs Johnson Space Center is responsible for curating all of NASAs astromaterial sample collections (i.e. Apollo samples, Luna Samples, Antarctic Meteorites, Cosmic Dust Particles, Microparticle Impact Collection, Genesis solar wind atoms, Stardust comet Wild-2 particles, Stardust interstellar particles, and Hayabusa asteroid Itokawa particles) [1-3]. To assist in sample curation and distribution, JSC Curation has recently installed an X-ray computed tomography (XCT) scanner to visualize and characterize samples in 3D. [3] describes the instrumental set-up and the utility of XCT to astromaterials curation. Here we describe some of the current and future projects and illustrate the usefulness of XCT in studying astromaterials

    Adventures in Lunar Core Processing: Timeline of and Preparation for Opening of Core Sample 73002 for the ANGSA Program

    Get PDF
    The Apollo mission returned 382 kg of rocks, soil and core samples, which have helped to advance our knowledge of lunar science. Studies of these lunar samples are crucial for our understanding of the Moons geological evolution. Here, we present the meticulous process that involves preparing for, and ultimately opening, the unopened Apollo 17 drive tube: 73002,0, so that the next generation of lunar scientists can further our insight into the Moons history

    Advanced Curation Activities at NASA: Preparing to Receive, Process, and Distribute Samples Returned from Future Missions

    Get PDF
    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation

    Curating NASA's Past, Present, and Future Extraterrestrial Sample Collections

    Get PDF
    As codified in NASA Policy Directive 7100.10F, the Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (hereafter JSC Curation) is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. JSC Curation curates all or part of nine astromaterial collections in seven clean room suites: (1) Apollo Samples (1969; ISO 6-7), (2) Luna Samples (from USSR; 1972; ISO 7), (3) Antarctic Meteorites (1976; ISO 7), (4) Cosmic Dust (1981; ISO 5), (5) Microparticle Impact Collection (formerly called Space Exposed Hardware; 1985; ISO 5), (6) Genesis Solar Wind Atoms (2004; ISO 4); (7) Stardust Comet Particles (2006; ISO 5), (8) Stardust Interstellar Particles (2006; ISO 5), (9) Hayabusa Asteroid Particles (from JAXA; 2010; ISO 5). In addition to the labs that house the samples, we have installed and maintained a wide variety of facilities and infrastructure required to support the clean-rooms: more than 10 different HEPA-filtered air-handling systems, ultrapure dry gaseous nitrogen systems, an ultrapure water system (UPW) and cleaning facilities to provide clean tools and equipment for the labs. We also have sample preparation facilities for making thin sections, microtome sections, and even focused ion-beam (FIB) sections to meet the research requirements of scientists. To ensure that we are keeping the samples as pristine as possible, we routinely monitor the cleanliness of our clean rooms and infrastructure systems. This monitoring includes: daily monitoring of the quality of our UPW, weekly airborne particle counts in the labs, monthly monitoring of the stable isotope composition of the gaseous N2 system, and annual measurements of inorganic or organic contamination in processing cabinets. We track within our databases the current and ever-changing characteristics of more than 250,000 individual samples across our various collections (including the 19,141 samples on loan to 433 Principal Investigators in 24 countries). The next sample return missions that NASA will participate in are Hayabusa2 and OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security - Regolith Explorer). The designs for a new state-of-the-art suite of clean rooms to house these samples at JSC have been finalized. This includes separate ISO class 5 clean rooms to house each collection, a common ISO class 7 area for general use, an ISO class 7 microtome laboratory, and a separate thin section lab. Additionally, a new cleaning facility is being designed and procedures developed that will allow for enhanced cleaning of cabinets and tools in an inorganically, organically, and biologically clean manner. We are also designing a large multi-purpose Advanced Curation laboratory that will allow us to develop the techniques necessary to fully support the Hayabusa2 and OSIRIS-REx missions, as well as future possible sample return missions (e.g., Lunar Polar Volatiles, Mars, Comet Surface). A micro-CT (micro Computed Tomography) laboratory dedicated to the study of astromaterials has come online within JSC Curation, and we plan to add additional facilities that will enable non-destructive (or minimally-destructive) analyses of astromaterials in the near future (e.g., micro-XRF (micro X-Ray Fluorescence), confocal imaging Raman Spectroscopy). These facilities will be available to: (1) develop sample handling and storage techniques for future sample return missions, (2) be utilized by PET (Positron Emission Tomography) for future sample return missions, (3) for retroactive PET-style analyses of our existing collections, and (4) for periodic assessments of the existing sample collections

    Metamorphism on Ordinary Chondrite Parent Bodies: The Role of Fluids.

    Get PDF
    第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月30日(金) 国立国語研究所 2階講

    Glia Excitation in the CNS Modulates Intact Behaviors and Sensory-CNS-Motor Circuitry

    Get PDF
    Glial cells play a role in many important processes, though the mechanisms through which they affect neighboring cells are not fully known. Insights may be gained by selectively activating glial cell populations in intact organisms utilizing the activatable channel proteins channel rhodopsin (ChR2XXL) and TRPA1. Here, the impacts of the glial-specific expression of these channels were examined in both larval and adult Drosophila. The Glia \u3e ChR2XXL adults and larvae became immobile when exposed to blue light and TRPA1-expressed Drosophila upon heat exposure. The chloride pump expression in glia \u3e eNpHR animals showed no observable differences in adults or larvae. In the in situ neural circuit activity of larvae in the Glia \u3e ChR2XXL, the evoked activity first became more intense with concurrent light exposure, and then the activity was silenced and slowly picked back up after light was turned off. This decrease in motor nerve activity was also noted in the intact behaviors for Glia \u3e ChR2XXL and Glia \u3e TRPA1 larvae. As a proof of concept, this study demonstrated that activation of the glia can produce excessive neural activity and it appears with increased excitation of the glia and depressed motor neuron activity

    Cardiopulmonary Inflammatory Response to Meteorite Dust Exposures - Implications for Human Health on Earth and Beyond

    Get PDF
    This year marks the 50th anniversary of Apollo 11, the first time humans set foot on the Moon. The Apollo missions not only help answer questions related to our solar system, they also highlight many hazards associated with human space travel. One major concern is the effect of extraterrestrial dust on astronaut health. In an effort to expand upon previous work indicating lunar dust is respirable and reactive, the authors initiated an extensive study evaluating the role of a particulates innate geochemical features (e.g., bulk chemistry, internal composition, morphology, size, and reactivity) in generating adverse toxicological responses in vitro and in vivo. To allow for a broader planetary and geochemical assessment, seven samples were evaluated: six meteorites from either the Moon, Mars, or Asteroid 4 Vesta and a terrestrial basalt analogue. Even with the relatively small geochemical differences (all samples basaltic in nature), significant difference in cardiopulmonary inflammatory markers developed in both single exposure and multiple exposure studies. More specifically: 1) the single exposure studies reveal relationships between toxicity and a meteorite samples origin, its pre-ejected state (weathered versus un-weathered), and geochemical features (e.g. bulk iron content) and 2) multiple exposure studies reveal a correlation with particle derived reactive oxygen species (ROS) formation and neutrophil infiltration. Extended human exploration will further increase the probability of inadvertent and repeated exposures to extraterrestrial dusts. This comprehensive dataset allows for not only the toxicological evaluation of extraterrestrial materials but also clarifies important correlations between geochemistry and health. The utilization of an array of extraterrestrial samples from Moon, Mars, and asteroid 4Vesta will enable the development of a geochemical based toxicological hazard model that can be used for: 1) mission planning, 2) rapid risk assessment in cases of unexpected exposures, and 3) evaluation of the efficacy of various in situ techniques in gauging surface dust toxicity. Furthermore, by better understanding the importance of geochemical features on exposure related health outcomes in space, it is possible to better understand of the deleterious nature of dust exposure on Earth

    A multidimensional examination of marital conflict and subjective health over 16 years

    Full text link
    Guided by stress process perspectives, this study conceptualizes marital conflict as a multidimensional stressor to assess how three aspects of conflict—frequency of disagreements, breadth of disagreements, and cumulative disagreements—impact subjective health. Longitudinal data of married couples spanning 16 years (n = 373 couples) were analyzed using multilevel modeling. For husbands, more frequent disagreements than usual within a given year were associated with poorer subjective health. For wives, the greater cumulative effects of disagreements over 16 years were harmful for subjective health. We discuss how gendered self‐representations and relationship power issues help explain the findings. This research demonstrated the importance of examining multiple aspects of marital conflict to reveal that their subjective health consequences function differently for wives and husbands.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151831/1/pere12292_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151831/2/pere12292.pd
    corecore